

∧XJ赤道儀W/L取扱説明書

このたびはビクセン天体望遠鏡をお買い求めいただき、まことにありがとうございます。

「AXJ赤道儀WL」は天体写真撮影を意識した赤道儀です。また付属の「ワイヤレスユニット」により、天体の自動導入、自動追尾をお手持ちのスマートフォンまたはタブレットで手軽にお楽しみいただけます。

※この説明書は「AXJ赤道儀WL」シリーズ共通の説明書です。お買い求めいただいた機種によっては、必要ない説明も掲載されていますのでご了承ください。

- ※鏡筒とのセット品でお求めの場合は必ず鏡筒ユニットに付属の取扱説明書をあわせてご覧ください。またカメラアダプターなど各種応用機器をご使用され る場合もそれぞれに付属の取扱説明書もあわせてご覧ください。
- ※本書の掲載内容は本書を作成した段階での内容となっております。「ワイヤレスユニット」などプログラムの更新で本書にはない機能が本体に含まれる場合 があります。この場合追加の説明は弊社ホームページ、またはアプリ内などで公開しておりますのでご確認ください。また、赤道儀をお買い求めいただいた 当初はプログラムが最新となっているとは限りません。最新のプログラムは弊社ホームページにて順次公開いたしますのでご確認ください。
- ※電源は別売となっております。ACアダプターPD12V·3A(別売)の使用、またはシガープラグを使用してボータブル電源(社外品)などバッテリーのシガー ライター用ソケットから電源供給してご使用ください(電池ボックス(乾電池)では正常に動作いたしません)。

)必ず最初にお読みください

安全上のご注意 この説明書では、使用者や他の人々への危害、財産への損害を未然に防ぎ、本製品を安全にお使いいただくために守っていただきたい事項を示しています。 内容 (表示、記号)をよくご理解のうえ、製品をご使用ください。

表示0)説明
▲螫4	取扱いを誤った場合、人が死亡または重傷(**1)を負うことが想定され る内容です。
	※1:重症とは、失明、治療のための入院または長期の通院を要す重大な怪我などを指します。
▲注音	 取扱いを誤った場合、人が軽傷(№2)を負うこと、または物的損害(※3)の 発生が想定される内容です。
	※2:軽傷とは、治療のための入院または長期の通院を要さない怪我などを指します。※3 :物的損害とは、家屋、家財、ベットなどに関わる損失、損害を指します。

🔵 \land 警告

- ○天体望遠鏡、ファインダー、接眼レンズなどのレンズ機器で、絶対に太陽をのぞいてはいけません。失明の危険があります。
- ◇レンズキャップを外したままで、直射日光の下に製品を放置してはいけません。 放置すると火災の原因となることがあります。
- ◇水などがかかる場所では使用しないでください。故障の原因となるばかりでは なく、感電や火災の原因となることがあります。
- ○ご自分または弊社以外による修理、改造、分解はおやめください。故障の原因 (症状の悪化を含む)となるばかりではなく感電や怪我、火災の原因となること があります。修理や点検をご希望される場合は、お買い上げの販売店または弊 社カスタマーサポートまでご連絡ください。
- ①レンズキャップ、乾燥剤、小さな部品類、包装用ポリ袋などでお子様が遊んだりしないように管理してください。飲み込んだりかぶったりすると、窒息死、怪我、健康被害を負う危険があります。万一、飲み込んだ場合は、直ちに医師に相談してください。
- ①煙が出ていたり、変な臭いがする時は、直ちに使用を中止し、電源ブラグをコン セントから抜く、電池を取り出すなどしてください。そのまま使用すると火傷、感 電、または火災の原因となることがあります。安全を確認した後、お買い上げの販 売店または弊社カスタマーサポートまでご連絡ください。
- ①内部に水や異物が混入した場合は直ちに使用を中止し、電源プラグをコンセントから抜く、電源を切る、電池を取り出すなどしてください。そのまま使用すると感電、発熱、火災の原因となることがあります。お買い上げの販売店または弊社カスタマーサポートまでご連絡ください。
- ①電源コード、電源プラグなどが傷んだり発熱した時は直ちに電源を切り、電源プラグが冷えたことを確認の上、コンセントから抜いてください。そのまま使用すると感電、火災の原因となることがあります。お買い上げの販売店または弊社カスタマーサポートまでご連絡ください。
- ①本体やウェイトなど、本製品には重量の大きいパーツ、部品が含まれます。取り扱いには十分ご注意ください。落下すると故障の原因となるばかりではなく、骨折など重大な怪我をする危険があります。
- ①お手入れなどで揮発性のあるクリーナーを使用する場合、およびスプレー缶タイプのクリーナーなどを使用する場合は、換気のよい場所で行ってください。密閉された環境で行うと中毒を起こすことがあります。
- ①お手入れなどで可燃性のあるクリーナー、およびスプレー缶タイプのクリーナー などを使用する場合は、火気を避けて行ってください。引火などによる火災の原 因となることがあります。

保証について

- ●当製品をお買い求めいただいた際の納品書、レシートなどが保証書として 有効となりますので、大切に保管ください。
 - 詳しくは「無償修理規定・アフターサービス(P64)」をお読みください。

記号の語	兒明
♦禁止	してはいけない内容です。
①指示	実行しなければならない内容です。

🔵 🛆 注 意

- ◎濡れた手での操作はおやめください。特に、プラグ、コネクターの抜き差し、および電子パーツの操作をすると感電や故障の原因となることがあります。
- ◎移動中や歩行中に製品を使用しないでください。衝突や転倒など、ケガの原因となることがあります。
- ◎電源コードなど通電のある配線を束ねたまま使用することはおやめください。 束ねている部分に常に負荷がかかっていること、および電気抵抗による発熱が 相互作用してコード被覆が傷み、ショートすることがあります。また火災の原因と なることがあります。
- ①プラグ、コネクターなどをお取扱いの際はコネクター本体を持ち、まっすぐに抜き 差ししてください。コードを無理に引っ張ったりすると、コード、プラグ、コネクター などが傷つき、火災、感電などの原因となることがあります。
- ①電池を使用する場合は、次のことをお守りください。これを守らないと、機器が 正常に動作しないばかりか、電池の液漏れ、破裂などによる火傷、怪我の原因と なることがあります。万一、液が皮膚や衣類に付着した場合は、直ちにきれいな 水で洗い流してください(液に直接触れないようにしてください)。特に、液が目 に入った場合は直ちに医師に相談してください。
- ◇指定以外の電池は使用しないでください。
- ◇種類の異なる電池、新しい電池と使用中(使用済)の電池をまぜて使用しないでください。
- ○電池に表示されている使用推奨期限を過ぎた電池、使用済電池を入れたままにしないで ください。

使用上のご注意(使用、お手入れ、保管など)

- ◇炎天下の自動車の中やヒーターなど高温の発熱体の前に製品を放置しないでください。故障の原因となることがあります。
- ◎本体を清掃する際、シンナーなどの有機溶剤は使用しないでください。変質する恐れがあります。
- ♥水などがかかる場所では使用しないでください。故障の原因となるばかりではなく、感電や火災の原因となることがあります。
- ①保管する際は直射日光を避け、風通しのよい乾燥した場所に保管してください。 ホコリ除けとしてビニールなどをかぶせておくと、さらによいです。
- ①電池で動作する電子バーツを長期保管される場合は、必ず電池を抜いて保管してください。電池が液漏れすることがあります。
- ①製品に、雨や水滴、泥、砂などがかからないようにしてください。これらが付着して汚れた場合(レンズなどの光学面を除く)、硬く絞った濡れ布巾などでよく拭き取ってください。清掃の際は傷をつけないように十分ご注意ください
- ①レンズなどの光学面にホコリやゴミが付着した場合は、市販のカメラレンズ用ブロワー等で吹き飛ばしてください。
- ①万一、指紋や油脂など落としにくい汚れがレンズに付着した場合、市販のカメラレンズ用ブロワー等でホコリやゴミを取り除いた後、カメラレンズ用レンズペーパー(社外品)※に少量のカメラレンズ用レンズクリーナー(社外品)※をしみこませ、軽く拭き取ってください。レンズなどの光学面は大変デリケートです。清掃の際、傷をつけないように十分ご注意ください。
 - ※それぞれに付属の説明書、注意書きなどもよくお読みください。

はじめに ・・・・・ P 2
必ず最初にお読みください ・・・・・ P2
△警告 P2
保証について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
使用上のご注意(使用、お手入れ、保管など)・・・・・・・ Р 2
目 次······P3
ご使用の前に ・・・・・ P4
◎セット内容の確認 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
◎赤道儀の原理 · · · · · · · · · · · · · · · · · P 4
◎赤道儀の基本動作と注意事項 ・・・・・・・・ Р 4
◎各部の名称 : 赤道儀、鏡筒その他・・・・・・ P5
ご使用の流れ ・・・・・ P6
◎全体の流れ · · · · · · · · P 6
「マプリのインストール・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
© 𝒴 𝒴 𝒴 𝒴 𝒴 𝒴 𝒴 𝒴 𝒴 𝒴 𝒴 𝒴 𝒴
Ⅱ 望遠鏡の組立て····· P7
①三脚の設置・・・・・ Р7
◎SXGハーフピラーを使用する場合・・・・・・・ P8
◎赤道儀の接続(SAGハーノビフーを使用しない場合)・・・・・ P9
◎ ホ 単 酸 の 友 枕 (3, 3, 0, -) と) - を 使 用 す る 物 ら) ・・・・・ P 9
③ウェイトの取付け・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
④ プレートホルダー、マルチプレート等の
取付け・・・・・・・P11
⑤鏡筒の取付け P12
⑥ファインダーの取付け ······ P13
◎暗視野ファインター II 7x50の場合 ····· P13
◎ス Y スホットファインター II の場合・・・・・・・ P14
⑧接眼レンズの取付け・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
 ⑨鏡筒とウェイトのバランス合わせ ········ P15
◎赤緯バランスのとり方・・・・・・・・・・・・・・・ P16
◎赤経バランスのとり方 ・・・・・・・・・・・・・・・ P17
Ⅲ ワイヤレスユニットの取付け・・・・・・・ P18
◎電源コードの接続・・・・・・・・・・・・ P19
Ⅳ スマートフォンとワイヤレスユニットの無線接続・・・・・・・ P20
V アプリの起動・基本操作 · · · · · · · · P21
◎基本操作1/本体·画面図解 P21
◎画面図解······ P22
◎基本操作2/望遠鏡を動かす・・・・・・・・ P22
Ⅳ 望遠鏡操作·自動導入 P23
①天体望遠鏡をのぞいてみましょう・・・・・・ P23
①天体望遠鏡をのぞいてみましょう・・・・・・・ P23 ②倍率を変えてみましょう・・・・・・・ P25
 ①天体望遠鏡をのぞいてみましょう・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
 ①天体望遠鏡をのぞいてみましょう・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
 ①天体望遠鏡をのぞいてみましょう・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
 ①天体望遠鏡をのぞいてみましょう・・・・・・P23 ② 倍率を変えてみましょう・・・・・P25 ③ ファインダーを合せましょう・・・・・P26 ◎ 暗視野ファインダーII 7x50の場合・・・・・P26 ◎ XYスポットファインダーの場合・・・・・P28 ④ 天体観測を始めてみましょう・・・・・P29 ⑤ 天体の自動導入・・・・・P30
 ①天体望遠鏡をのぞいてみましょう・・・・・・・P23 ② 倍率を変えてみましょう・・・・・・P25 ③ ファインダーを合せましょう・・・・・P26 ③ 暗視野ファインダーII 7x50の場合・・・・・P26 ③ XYスボットファインダーの場合・・・・・P28 ④ 天体観測を始めてみましょう・・・・・P29 ⑤ 天体の自動導入・・・・・P30 ◎ 天体自動導入の仕組み・・・・・P30

天体自動導入の流れ ・・・・・	P30
Ⅰ 赤道儀の設置 ・・・・・	P31
Ⅱ ホームポジションの確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P31
〒 マライメント (士白訊字)	D22
血 アライメント (万回設定)	P32
◎アライメント手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P32
Ⅳ 天体の自動導入・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P34
応 用	P35
I アプリ・ファームウェアのバージョンアップ・・・・・	P35
Ⅱ リセット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P35
Ⅲ 極軸望遠鏡のご使用方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P36
◎極軸望遠鏡とは・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P36
◎各部名称	P36
◎極軸望遠鏡スケールの記号説明・・・・・・	P36
◎基本操作 ・・・・・	P37
◎北半球における極軸の合わせ方・・・・・・	P38
◎南半球における極軸の合わせ方・・・・・・	P44
◎より精密な極軸合わせ(上級者向け)・・・・	P50
◎北半球における設置・・・・・・	P50
◎南半球における設置 ・・・・・・	P52
◎高緯度または低緯度地方におけるセッティング・・・・・	P53
₩ オートガイダー ・・・・	P54
仕様	P55
◎AXJ赤道儀WL スペック・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P55
◎ワイヤレスユニット スペック・・・・・・・・・	P55
◎ワイヤレスユニット仕様 ・・・・・	P56
◎赤道儀端子部仕様	P56
◎赤道儀本体寸法図 ・・・・・・・・・・・・	P57
◎AXJ赤道儀筒受け寸法図	P57
◎SXGハーフピラー (別売)寸法図 ・・・・・・	P57
◎ASG-CB90三脚(別売)寸法図 ······	P58
◎ピラー脚SXG-P85DX (別売) 寸法図 ···	P58
FAQ(質問編)・・・・・	P59
FAQ(トラブル編) ・・・・・	P61
ビクセン製品ご相談窓口のご案内・・・・・	P64

◎ セット内容の確認

本製品には以下のものが入っています。内容をお確かめください。

赤道儀以外のセット内容(鏡筒など各種機器)についてはそれぞれに付属の説明書にてご確認ください。 ※電源は別売となっております。

内容物	数量
● AXJ赤道儀WL本体	1
❷ AXDウェイト: 3.5kg、1.5kg	各1
ワイヤレスユニット	1
❹ M8ネジ(M8×20mm)	4
⑤ 六角レンチ : 6mm、5mm、1.27mm	各1
❻ シガーソケット用電源コード	1
⑦ 保証書兼WEB取扱説明書案内書	1
❸ カラー星空ガイドブック	1

※1:望遠鏡セット品でお買い求めの場合は内容明細が異なることがあります。※2:電源は別売です。

◎ 赤道儀の原理

赤道儀とは?

星は北極星(正確には天の北極)を中心に して1日約1回転しているように見えます (星の日周運動)。これは地球が地軸を中 心にして1日に約1回自転しているために 起こるものです。この日周運動に合わせて 望遠鏡を動かせる構造を持つ架台(望遠 鏡を載せる台)を「赤道儀」といいます。 「赤道儀」は、その回転軸(極軸)と地軸(地 球の自転軸)を平行に設置することで機能 するようになります。(下図を参照)

◎ 赤道儀の基本動作と注意事項

赤道儀の動作は、すべてスマートフォン(ダブレット) +専用アプリレーションよる電動式となっています。

赤道儀は全体の重量バランスが取れた状態ではじめて正確に機能します。 バランスが崩れたまま使用すると、星をスムーズに追尾できない、振動の影 響を受け易い、鏡筒がずれるなどして観測が行なえない、あるいは故障の原 因となる場合もあります。必ず重量バランスを取ってください。バランスの取 り方については、準備の項(P16~参照)をお読みください。

◇ 注意 1 : クランプをゆるめずに手で動かすと、故障の原因となります。
 ◇ 注意 2 : 強いショックを与えるとギヤやベアリングに重大な損

傷が起こり正常に動作ができなくなることがあります。

赤道儀をホームボジションに向けるため、また収納の際にコンパクトにまと められるよう、クランプ(しめつけノブ)を装備しています。また万がーショッ クを受けた場合に重要パーツであるギアを保護するため、収納して運搬す る際は、クランプを必ずゆるめてください。また、クランプをゆるめた状態 を除き、手動では決して動かさないでください。

(ワイヤレスユニットにてご使用の際は必ずこのクランプをしめてください。)

◎ 全体の流れ

製品をご使用いただくために、次のステップでセッティングを進めてください。

) I アプリのインストール

赤道儀を制御するにあたり、スマートフォン(iOS®、Android™)および専用アプリケーションソフトウェア(以下、アプリ)「STAR BOOK Wireless」 を使用**します。お手持ちのスマートフォンにあらかじめアプリをインストールしておいてください。アプリは以下よりダウンロードできます。 **AXJェンコーダーとは併用不可。

◎ アプリのダウンロード

お手持ちのスマートフォンにアプリ「STAR BOOK Wireless」をインストールします。インストール方法については、お手持ちのスマートフォンの説明 書をお読みください。アプリは以下よりダウンロードできます。

スマホで操作する天体ナビゲーションアプリ **STAR BOOK WIRELESS** iOS®版、Android™版無料でダウンロードいただけます。

iOS®とApp Store®は、Apple Inc.の商標です。 Google Play および Google Play ロゴは Google LLC の商標です。

https://www.vixen.co.jp

〕Ⅱ 望遠鏡の組立て

- 鏡筒やパーツ類を取付ける場合はそれぞれの説明書も併せてお読みください。
- 赤道儀単体でお求めの場合またはお買い求めのセット内容によっては含まれないものもあります。
- ① 重量があるので組立て時は十分に注意してください。落下すると機器が故障するばかりでなくケガをする危険があります。
- ① 組立て時、三脚の可動部分に指などをはさまないように十分注意してください。

① 三脚の設置

三脚は別売です。ただし望遠鏡セットでお求めの場合はセットに付属していることがあります。ここではASG-CB90三脚を例に説明しています。

 水平で安定した観測場所を選んで設置してください。
 脚の先端は可変石突になっており、ゴム石突を回すとスパイク、ゴム石突 の変換ができます。設置する地面の状況に応じてご使用ください。
 ※三脚の運搬や保管をされる際は、必ずゴム石突を最大に伸ばしてくだ さい。スパイクがむき出しのまま運搬したり保管したりすると、怪我やス パイク接触面のキズ原因となることがあります。

- 3 必要に応じて、三脚の長さを調整してください。脚ロックナットを起こして 脚を引き出し、必要な長さで脚ロックナットを倒して固定します。
 - ※調整後は、脚ロックナットをしっかり倒してください。ゆるんでいると、 不意に脚が縮むなどして三脚が転倒したり怪我をしたりする恐れが ありますので、十分ご注意ください。

 ステーロックネジをゆるめて、三脚を開きます。
 三脚が転倒しない様に、三脚をいっぱいに開いて設置してください (ステーが大きく開きます。写真参照)。

三脚架台の上面が水平になるように設置してください。

※ガイドパイプを回せなくなるため、現時点ではステーを下げないでく ださい。

Ⅱ 望遠鏡の組立て

◎ SXGハーフピラーを併用する場合 (SXGハーフピラーを併用しない場合は、「② 赤道儀の接続」へ)

SXG ハーフピラーを併用する場合は水平支点(ツノ)を取付けます。
 三脚架台上面の表記を確認し、SX 側にねじ込みます。

2市販のドライバーなどを使用してゆるまないようにしっかりと固定してください※。

- ※ゆるまないようにしっかりと固定してください。 特に奥までしっかりとねじ込んで固定しませんと使用中に曲がったり破損することがあります。
- 3 ハーフピラーの下にある固定ネジをあらかじめゆるめておき、ハーフ ピラーを三脚に載せます。

載せる際は、ハーフピラーの下にある穴と脚側(三脚、ピラー脚など) の水平支点(ツノ)の位置を合わせて載せてください。

4 載せた後は三脚にある架台固定ボルトとハーフピラーの固定ネジを しっかりとしめて固定してください。

※SXGハープピラーに付属の水平支点は使用しません。

□ 望遠鏡の組立て

② 赤道儀の接続

◎ 赤道儀の接続(SXGハーフピラーを使用しない場合)

| 三脚の1本が北側※になるように三脚の向きを修正します。

※以下、北半球での設置。南半球では南側に脚の1本を配置します。

2写真を参考に、赤道儀下部の突起を三脚のくぼみに合わせて搭載します。 赤道儀の前側(写真参照)が北向きとなるように配置してください。

3 架台が動かないように手で支え、もう片方の手でガイドパイプを持ち上げながら反時計回りにまわします。

ネジがねじ込まれますので、架台を上に持ち上げても固定される状態になる までしめます。

◎ 赤道儀の接続(SXGハーフピラーを使用する場合)

写真を参考に、赤道儀下部の突起をハーフピラーのくぼみに合わせて搭載 します。赤道儀の前側(写真参照)が北向きとなるように配置してください。

2赤道儀を手で支えながら、SXGハーフピラー内部にある架台固定ボルト)をしめて固定します。ゆるまないようにしっかりしめてください。

◎ ステーについて

1 三脚の設置強度を確保するため、ステーを下ろします。写真を参考にステーの 付け根がガイドパイプの下端に届くまで鉛直下向きに押してください(下端に 届くとパチンという音がします)。最後にステーロックネジをしめてください。

三脚の高さ(長さ)や水平を再調整する場合はP7項目4と同様に作業し ますが、架台や三脚をしっかり支えながら行ってください。作業中に三脚 が転倒したり指を挟んだりする危険がありますので十分ご注意ください。 できれば、助手に支えてもらいながら作業すると楽になります。

Ⅱ 望遠鏡の組立て

以下SXGハーフピラーを使用していない写真で説明しています。

③ウェイトの取付け

搭載機材が軽量の場合はウェイト軸の重量だけでバランスが合うことがあります。搭載機材の重量が2kg程度の場合、ウェイトは取付け不要です。

⚠ ウェイトは大変重いパーツですから、取扱いには十分ご注意ください。

ウェイト軸固定クランプをゆるめると、ウェイト軸を引き出せます。 ウェイト軸をいっぱいまで引き出して、ウェイト軸固定クランプをしっか りとしめます。

2 ウェイト脱落防止ネジを回して取外します。ウェイトにあるウェイト固定 クランプをゆるめて、ウェイト軸に通します。

了ウェイトを通す際は写真(右)のようにウェイト固定クランプが上(ウェイト軸の付け根側)になるようにしてください。

↓
ウェイト固定クランプをしめて固定します。また安全のためウェイト脱 落防止ネジをウェイト軸先端に再び取付けてください。ゆるまないよう にしっかりと固定してください。

□ 望遠鏡の組立て

④プレートホルダー、マルチプレート等の取付け

AXJ赤道儀では筒受け部に各種対応の取付けネジ穴を装備しています。下記いずれかの方法で必要パーツ類を取付けてください。また各種取 付けるパーツにより内容が異なりますので、取付けるパーツの説明書も併せてお読みください。

※搭載する他社製品の説明書、および穴の配置を参考に取付けてください。次頁の「⑤鏡筒の取付け」へ進みます。

Ⅱ 望遠鏡の組立て

⑤鏡筒の取付け

⚠ 鏡筒が脱落するとたいへん危険です。取扱いには十分ご注意ください。

鏡筒が脱落するとたいへん危険です。鏡筒固定ネジはしっかりとしめてください。併せて脱落防止ネジも一番奥までねじ込んでください。

◎大型プレートホルダー(別売)利用による取付け ◎プレートホルダーSX (別売) 利用による取付け VMC260L 鏡筒を取付けた例 AX103S鏡筒を取付けた例 鏡筒固定ネジ 写真のように鏡筒固定ネジ2本 写真のように鏡筒固定ネジ、脱 をあらかじめゆるめておきます。 落防止ネジをあらかじめゆるめ ておきます。 大型プレートホルダー ▲ 鏡筒の大型アタッチメントレー ▶ 鏡筒のアタッチメントプレート ▲ ル (大型スライドバー)を写真 ▲ WTを写真のように当ててく のようにスライドさせながら入 ださい。 れます。 鏡筒 大型アタッチ メントレール (大型スライドバー) 角 鏡筒を支えながら鏡筒固定ネ 角 鏡筒を支えながらネジをしめて 〕ジ2本をしめて固定します。ゆ **〕** _{固定します。} るまないようにしっかりしめ込 ①鏡筒固定ネジ み固定してください。
 ⑦脱落防止ネジ
 の順でネジをしめます。 鏡筒固定ネジはゆるまないよう にしっかりしめ込み固定してく ださい。 鏡筒固定ネジ 次頁の「⑥ファインダーの取付け」へ進みます。 次頁の「⑥ファインダーの取付け」へ進みます。

ixen 鏡筒 アタッチメントプレートWT

プレートホルダーSX

鏡筒脱落防止ネジ

鏡筒固定ネ

│Ⅱ 望遠鏡の組立て

⑤ ファインダーの取付け(機種によりファインダーは異なります。)

◎暗視野ファインダーII 7×50 (50mm用XYファインダー脚II)の場合

ファインダーを使用するためには調整が必要です。詳しくは**P26**~をお読みください。

⚠ 警告!

作業の性質上、手順を誤るとファインダーなど取付けた機器を落下させる危険もあります。落下させると機器故障の原因となるばかりではなくケガを する恐れがありますので、作業中の鏡筒保持は十分注意して行ってください。特にネジ類をゆるめる場合はゆるめすぎに十分ご注意ください。

2接眼ユニットの固定ネジをさらに ゆるめ、取りはずします。

35 写真のようにファインダー本体に 0リングを通します。

マァインダーの前側にある溝から 約6mm手前のところまでのリング を通します。手を離した状態でのリ ングがその位置に安定して止まっ ていることをご確認ください。のリ ングがよじれていると固定されず に不安定になることがあります。

5 ファインダー脚の調整ネジ2本を 十分にゆるめます。

※注

脚の下側にある突起は調整ネジで はありませんので、絶対に回さない でください。(バネになっています)

6 写真を参考に、ファインダー脚の 前側からファインダーの接眼部を 差し込みます。Oリングとファイン ダー脚が接触するところまで差し 込んでください ※注 作業中、ファインダー表面が ファインダー脚内面とすれて傷が つく恐れがありますので、差し込む 際は十分ご注意ください。

8はじめに取りはずした固定ネジお よび接眼ユニットを取付けます。

9 ファインダー調整ネジ2本を均等 にしめ、ファインダー本体が脚にバ ランスよく収まるようにして組み込 み完了です。

10 使用される望遠鏡の説明書に 従い、鏡筒にあるファインダー 脚固定ネジをゆるめておき、ファイ ンダー脚を後ろ側(接眼部側)から スライドさせてセットしてください。 セットしたらファインダー脚固定 ネジをしっかりとしめて固定して ください。

Ⅱ 望遠鏡の組立て

◎暗視野ファインダーII 7×50 (50mm用ファインダー脚(S)) の場合

写真のようにファインダー脚にあ る3本のネジとセットビス3本を ゆるめます。 セットビスはファインダー脚に付 属の六角レンチ2mmでゆるめて ください。

▲ 写真を参考に向きに注意してフ 4 ァインダー脚にファインダー本体 を通します。

う3本のファインダー調整ネジを均 ●等にしめ、軽く固定します。 この時点では強くしめず、ガタつ かない程度にとどめておいてくだ さい。

◎XYスポットファインダーⅡの場合

ファインダー脚固定ネジを回しゆるめます。

▶ 本体の向きに注意しながら、ファインダー脚台座のアリミゾに差し込み、 4 ファインダー脚固定ネジを回し固定します。

※スポットファインダー脚はプラスチック製です。(強くしめ過ぎますと破損 につながる場合がありますのでご注意ください。)

⑦ フリップミラーの取付け

ここではAX103S鏡筒の例で説明しています。 機種によってはフリップミラーではなく、接眼アダプターのみが付属してい ることがあります。 詳しくは各鏡筒の説明書にてご確認ください。

▲ 写真のように接眼部にある2本の固定ネジをゆるめてフリップミラーを ■取付けます。

2取付けたら固定ネジをしっかりしめて固定してください。

■ 天体望遠鏡に付属の説明書を参 〕考に、ファインダーを鏡筒に取付 けます。

度にとどめておいてください。

┃ Ⅱ 望遠鏡の組立て

⑧ 接眼レンズの取付け

ここではAX103S鏡筒の例で説明しています。 機種によっては接眼部が異なることがあります。 詳しくは各鏡筒の説明書にてご確認ください。

接眼レンズ固定ネジをゆるめ、接眼レンズを右図のように差し込みます。

↑ 差し込んだら接眼レンズ固定ネジで固定してください。

※ フリップミラーでは、2ケ所に接眼レンズを取付けることができます。 ただし接眼レンズの同時使用はできません。

⑨ 鏡筒とウェイトのバランス合わせ

■ バランスを合わせなければならない理由

ドイツ式赤道儀では赤経軸(極軸)、および赤緯軸と呼ばれる互いに直交する2つの軸に沿って回転動作します。それぞれの回転はギアにより行いますが、 ギアの負担が少ないほど安定する性質があります。重量バランスが崩れているとギアに負担がかかり、正常動作しないことがあります。 天体望遠鏡では性質上高い回転精度を要求されるため、できるだけギアの負担を少なくすることが重要です。このため赤経と赤緯それぞれの回転軸に重心 が来るように調整します。

※2kg以下の鏡筒を搭載するとバランスが取れないことがあります。この場合はマルチプレートDX(別売)などを併用して2kg以上となるようにしてご使用ください。

\land 警告

作業の性質上、保持の方法によっては鏡筒やファインダーなど取付けた機器を落下させる危険もあります。落下させると機器故障の原因となるばかりではなく ケガをする恐れがありますので、作業中の鏡筒保持は十分注意して行ってください。特にネジ類をゆるめる場合はゆるめすぎないように十分ご注意ください。

<u>Ⅲ 望</u>遠鏡の組立て

◎ 赤緯バランスのとり方

アタッチメントレール(スライドバー) 式鏡筒の場合

ウェイト軸

鏡筒またはウェイト軸を手で 支えながら、赤経クランプをゆ るめて(1-1)、赤緯軸またはウ ェイト軸が水平になるようにし ます。(1-2) 位置が定まったら赤経クラン プをしめて自然に動かないよ うにします。

※必ず鏡筒またはウェイト軸 を手で支えながら行ってくだ さい。手で支えずにクランプを ゆるめるとケガや故障の原因 となります。

2次に鏡筒を手で支えながら赤緯 クランプをゆるめます。(2-1)

ここで、赤緯クランプをゆるめ ても鏡筒が重量によって自然 に動かない状態であるかどう かを確認します。手を離しても 鏡筒が動かない場合は調整の 必要はありません。手を離すと 重量で自然に動く場合は以下 の調整をします。

鏡筒を手でしっかりと支えなが らアタッチメントレール(スライド バー)をしめつけている鏡筒固 定ネジを少しゆるめます。
の注意

目安として鏡筒が矢印 (← →) の方向にスライドできるように ゆるめます。鏡筒の位置をずら して鏡筒固定ネジをしめて仮固 定し、手を離しても鏡筒が自然 に動かなくなる位置(重心)を探 します。

① 注意

ネジをゆるめ過ぎると鏡筒が落下する恐れがあります。大変危険です ので十分ご注意ください。

落下防止のため必ず鏡筒を保持しながら調整してください。

3場所(重心)が定まったら鏡筒 固定ネジをしめます。ゆるまな いようにしっかりと固定してく ださい。 鏡筒脱落防止ネジも併せてし めてください。

鏡筒バンド式鏡筒の場合

鏡筒またはウェイト軸を支えながら、赤経クランプをゆるめて(1-1参照) 赤緯軸またはウェイト軸が水平になるようにします。位置が定まったら 赤経クランプをしめて自然に動かないようにします。(1-2参照)

2次に鏡筒を手で支えながら赤緯 クランプをゆるめます。

(2-1参照)

1-1

22

赤経クランプ

ここで、赤緯クランプをゆるめ ても鏡筒が重量によって自然 に動かない状態であるかどう かを確認します。手を離しても 鏡筒が動かない場合は調整の 必要はありません。手を離すと 重量で自然に動く場合は調整 します。

目安として鏡筒が矢印(←→) の方向にスライドできるようにゆるめます。 鏡筒の位置をずらしてみて、手を離しても鏡筒が自然に動かなくなる位置(重心)を探します。 とント 1

① 注意

ネジをゆるめ過ぎると鏡筒が落下する恐れがあります。大変危険です ので十分ご注意ください。 落下防止のため必ず鏡筒を保持しながら調整してください。

3場所 (重心)が定まったら鏡筒バンドのしめネジをしめます。ゆるまないようにしっかりと固定してください。

| 赤緯クランプをしめて赤緯バランス取りは完了です。

ヒント1 : バランス

重心がとれず、バランスが取れない場合、あるいは取りにくい場合は 用スライドバー(別売)、マルチプレートDX(別売)などの併用を推奨 いたします。

Ⅱ 望遠鏡の組立て

◎ 赤経バランスのとり方

 ・ウェイト軸を手で支えながら赤緯軸、またはウェイト軸が水平になるまで回転させます。手を離しても鏡筒が自然に動かなければ調整の必要はありません。手を離すと重量で自然に動く場合は調整します。

2 ウェイト軸を手で支えながらウェイト固定クランプをゆるめて、ウェイトをウェイト軸上でスライドさせウェイト固定クラン プを仮固定します。この操作をくり返しながら、鏡筒の重さとウェイトの重さがつり合う位置を探してください。 ②注意 手を離しても鏡筒が重量で自然に動かなくなるまで行います。

※搭載機材重量が軽量である場合はウェイト軸自体の重さでつり合うことがあります。ビント2 この場合ウェイトは使用せず、ウェイト軸を伸ばした際の長さでバランスを取ってご使用ください。

※2kg以下の鏡筒を搭載するとバランスが取れないことがあります。この場合はマルチプレートDX(別売)などを 併用して2kg以上となるようにしてご使用ください。

3つりあった位置が見つかりましたらウェイト固定クランプをしめます。ゆるまないようにしっかりと固定してください。

↓ 赤経クランプをしめて赤経バランス取りは完了です。

◇注意

あまり大きくウェイトをスライドさせないでください。急に動いて鏡筒が三脚・体などに当たって危険ですので十分ご注意ください。

ヒント2 : バランス目安

赤道儀側のCONTROLLER端子にワイヤレスユニットを取付けます。コネクター差し込み形状に合わせて一番奥まで差し込みます。※

※ワイヤレスユニットの取付けは必ず電源コードを取付ける前に行ってください。赤道儀の電源が入ったまま でワイヤレスユニットを取付けると故障する場合があります。特に暗い観測現場で赤道儀のスイッチ状態が 確認しにくい状況で組立てる際に故障リスクを回避できます。

2ワイヤレスユニットにある固定ネジをしめてしっかり固定してください。

● Ⅲ ワイヤレスユニットの取付け

◎ 電源コードの接続

電源は別売となっております。ACアダプターPD12V·3A(別売)の使用、またはシガーコードを使用 してポータブル電源(社外品)などバッテリーのシガーライター型ソケットから電源供給してご使用く ださい(電池ボックス(乾電池)では動作いたしません)。

電源スイッチがOFF(「O」が押し込まれている状態)となっていることを確認し、赤道儀の電源端子に電源コードを繋ぎます。

※写真は電源コードを接続した状態です。

① 注意:電源および電源コードのお取扱いについて

- ◎ 電源コードのコネクター付近を強く曲げたり引っ張ったりしないでください。断線の恐れがあります。
- ○コードを束ねたまま使用することはおやめください。 熱などによりコードの被膜が破れ、ショートする恐れがあります。
- ◎ カーバッテリーをご使用の場合、エンジンをかけたまま使用しないでください。ノイズなどにより赤道儀が誤動作することがあります。
- ① 市販の電源をご使用の場合は12V3Ah以上のものを使用してください。シガーソケットを装備した電源があれば付属のシガーソケット用電源コードが接続できます。
- ① 電源コードを着脱する場合、必ずプラグを持ってまっすぐに着脱してください。特に電源コードを抜く際にコードを引っ張ると断線する恐れがあります。

19

① カーバッテリーをご使用の場合、バッテリーあがりにご注意ください。

① 注意:ウェイト干渉について

AXDウェイト3.5kg、AXDウェイト7kgをウェイト軸固定クランプ近くで固定すると、ワイヤレスユニット とウェイト固定クランプが干渉し破損する場合があります(赤緯の動作中にウェイトが回転します)。

ウェイトを取付けの際はウェイト軸固定クランプから少し離して取付け、干渉のないことをご確認の 上ご使用ください(写真参照)。

Ⅳ スマートフォンとワイヤレスユニットの無線接続

ここでは、iOSの例で説明しています。 電源を入れてください。2秒程度経過すると赤い ランプ・①/ 奈が点灯します。

2スマートフォンの設定画面にて無線LANの接続設定画面を開き、 SSIDを選択します。

「VixenWirelessUnitXXXX」(Xは数字)をタップします。

SSIDをタップするとパスワードを要求されますので、手動で入力します。 工場出荷時のパスワードは「1234567890」に設定されています (SSID、パスワードはアプリ内で任意に変更できます)。

20

↓
接続が完了するとワイヤレスユニットの無線接続インジケーター
⑦が青に変わります。
赤のまま変化がない場合は接続できていませんので、再度2から行ってください。

スマートフォンとワイヤレスユニットが無線接続されるとインターネットにアクセスできなくなります。 インターネットを接続する場合はワイヤレスユニットの無線接続を切断してから再接続してください。

● V アプリの起動・基本操作

ワイヤレスユニットの無線接続インジケーター つが青(アプリと接続状態)であることを確認し、スマートフォンの アイコン (会 [STAR BOOK Wireless]をタップします。 ソフトが立ち上がるとすぐに使用できるようになります。

◎基本操作1/本体・画面図解

画面図解

ボタンや表示、星図などを指でタップ、スワイプすることで操作できます。

※画面配置などのデザインは取扱説明書作成時のものです。アプリのバージョンにより内容が異なる場合があります。

SCOPE MODEにてアプリの星図画面 を指でスワイプすることで望遠鏡が対応 方向に動作します。また画面を拡大する と細かな動作に対応できます。拡大縮小 はズームスライダーで操作します。 スワイプ時の動作方向は高度方位・赤経 赤緯から選べます。

ズームスライダー

●地上の景色を見る

ヒント4

天体望遠鏡は天体を観察する機器です。しかし、目安として200m程度以上の距離があれば昼間の地上の景色でも見ることができます。 天体望遠鏡で昼間明るいうちに地上の景色を見る理由として次の2つの重要な目的があります。(ほとんどの場合倒立像または斜めに見えます。)

●天体望遠鏡の操作に慣れましょう

天体望遠鏡の操作に慣れる前にいきなり暗い夜空の下で天体観測を始めるのは難しいものです。 昼間の地上の景色をのぞきながら天体望遠鏡の基本動作を確認することで夜の観測時に困らないように備えます。

●ファインダーの光軸を合わせます ピント3

ファインダーとは天体望遠鏡の照準器のことです。こちらで見たい対象を合わせると望遠鏡本体から見えるようになるものです。しかし、天体望遠鏡を 組立てた段階では天体望遠鏡鏡筒の視野とファインダーの視野は一致していませんので、使用する前に調整する必要があります。(P26参照)

とント3 天体望遠鏡は倍率が高いので見えている範囲が極めて狭いものです。従って方向を定めようとしてもなかなか定まりません。 ファインダーはこの手助けをする上で非常に重要な装置です。 原則初回のみ調整することで、以降の調整は不要です。ただし運搬などで分解された場合、および狂った場合は再調整する必要があります。

① 天体望遠鏡をのぞいてみましょう

<u>小</u>警告:太陽は絶対に望遠鏡で直接のぞいてはいけません、失明の危険があります

最低200m以上先が見える視界の広い屋外に天体望遠鏡を設置してください。とント4 動作に支障を来たすようなものが周囲にないことをご確認ください。

室内からガラス越しに見ると像がぼやけたり二重になってみえたりします。また窓をあけても室内外に温度差があると窓から空気が流れます。 この影響により像がカゲロウのように揺らいでしまい、よく見えないことがあります。 また、天体望遠鏡鏡筒が外気温になじんでないと像がゆらいでよく見えないことがあります。 (屋外でも気象状態により像が揺らぐことがありますが、室内から見た場合と比較すればかなり安定しています。)

↑ 対物キャップ、接眼キャップを取外してください。キャップの場所は機種によって異なります。

3 接眼レンズを取付ける場所(のぞく場所)を確認します。機種によって取付ける場所(のぞく場所)は異なります。
とント5 またフリップミラーの場合は接眼レンズを2ヶ所に取付けることができますので、のぞきやすい方の接眼レンズをのぞいてください。また、フリップミラーの切替ハンドルによって、のぞいている接眼レンズに光路が来るようにしてください。※まず、低倍率の接眼レンズから使ってみましょう。

接眼レンズのmm数が大きいレンズ(=倍率が低い接眼レンズ)を使うと拡大率は小さいですが、 目標物は明るくシャープに見えます。また広い範囲が見えるため目標物が探しやすくなります。こ のため観察を始める際は必ずmm数の大きい低倍率の接眼レンズから使いましょう。ビント10

のぞく場所が横についている反射式の場合、向きによっては見づらいことがあります。 この場合は鏡筒を手で支えながら鏡筒バンドしめネジを少しゆるめて鏡筒を回転させ ることができます。見やすい姿勢となるまで回してご使用ください。 位置が定まりましたら改めて鏡筒バンドをしめつけて固定してください。

Ⅵ 望遠鏡操作·自動導入

接眼レンズ固定ネジをゆるめてmm数(接眼レンズに表示されてる数字)の大きい接眼レンズ(=倍率が低い接眼レンズ) ピント6 を一番深いところまで差し 込みます。差し込んだ後、接眼レンズ固定ネジをしめてしっかり固定します。

mm数の小さい接眼レンズ (=倍率が高い接眼レンズ)を使用しますと見える像が暗くピントの合う範囲も狭くなります。 このため見づらくなりがちです。観測の初めは、必ずmm数の大きな接眼レンズ (=倍率が低い接眼レンズ)を使用してください。

ヒント6 望遠鏡の倍率は対物レンズ/主鏡の 焦点距離を接眼レンズの焦点距離 で割った数値です。

接眼レンズ	望遠鏡の焦点距離	接腿	マンズの焦点距離		倍率
SLV20mm	800mm	÷	20mm	=	40倍
SLV 5mm	800mm	÷	5mm	=	160倍

例: 焦点距離800mmの望遠鏡にてSLV20mm、SLV5mmを使用した場合

5 SCOPE MODEにてアプリの星図画面を指でスワイプすることで望遠鏡が対応方向に動作します。また画面を拡大すると細かな動作に対応できます。 が大縮小はズームスライダーで操作します。スワイプ時の動作方向は高度方位・赤経赤緯から選べます。

6 初めはピントが合っていない状態ですから、 フォーカスノブ(合焦ハンドル)をゆっくり回し てピントが合うところを探します。 ビント7 ビント8

直角側

直視側

うまく見えない時は次をご確認、またはお試しください。

- ●昼間にのぞいて明かりがまったく見えない場合は対物キャップが閉まっているか、またはフリップミラーの光路がのぞいている接眼レンズ側になっていない 可能性があります。対物キャップが閉まっていないかどうかお確かめください。また、フリップミラーの切替ハンドルをまわして光路を切替えてみてください。
- ●接眼レンズは取付けましたか? 天体望遠鏡は接眼レンズを取付けないと見えません。 バローレンズ等を使用している場合であっても接眼レンズは必要です。

●目標物までの距離が近くありませんか?天体望遠鏡は近いところにはピントが合わないことがあります。最低でも200m以上遠方の景色でお試しください。

●目標物(見たい物体)がとらえられていない可能性があります。慎重に向きを修正してみてください。特に視野一面青みがかった灰色一色、または白一色である 場合は、天体望遠鏡が対象物をとらえず空に向いている可能性があります。空でもピント位置は必ずあるはずですが、目立つ目標がないためピントを合 わせるべき位置を確認できません。目標物がとらえられるように向きを直してみてください。

)Ⅵ 望遠鏡操作·自動導入

② 倍率を変えてみましょう

天体望遠鏡は接眼レンズを交換することで倍率を変更できます。倍率を高くするとより目標物(天体)を大きく拡大して見ることができます。ヒント9 ただし、高倍率にするほど見える範囲が狭くなり、像が暗く不鮮明となっていきます。ヒント10

とント9 恒星は大きさを確認できないほど遠方にありますので、倍率を高くしても光の点にしか見えません。

接眼レンズ固定ネジをゆるめ、mm数の大きな接 眼レンズからmm数の小さな接眼レンズ(=倍率 が高い接眼レンズ)に差し換えてみましょう。差 し換える際、mm数の大きな接眼レンズ(=倍率 が低い接眼レンズ)の視野の中央に対象物(天 体)が見えるように天体望遠鏡の向きを調節して から差し換えてください。 とント10 差し換えたら 必ず接眼レンズ固定ネジをしめてください。 またフリップミラーを使用している場合は覗いて いる接眼レンズに光路を合わせてください。ミラ ー切替ハンドルを回転させて行います。

2 接眼レンズを差し換えた場合はピントを合わせ 直します。倍率が高くなるとピントの合う範囲が 狭くなるうえ像が暗く、低倍率の場合と比較して 不鮮明になります。このためフォーカスノブ(合焦 ハンドル)はより一層ゆっくりと慎重に回してくだ さい。

接眼レンズのmm数が小さいレンズ (=倍率が高い接眼レンズ)を使うと、目標物を大きく拡大して見ることができます。目標物の一部をさらに 拡大して見る場合に使いましょう。

ただし倍率が高い接眼レンズを使うほど、見える範囲が狭くなります。 このため高倍率の接眼レンズと差し換えると目標物が中央に見えなくなるか、または視野から外れて見えなくなってしまうことがあります。

まず低倍率の接眼レンズで目標物が視野の中央に見えるように天体望遠鏡の向きを調節します。目標物を中央にとらえてから高倍率の接眼レンズに差し換えることで視野内に目標物をとどめることができます。

高倍率の接眼レンズから先に使用すると、視野が狭いがゆえに目標物を見つけられなくなることがありますのでご注意ください。

③ ファインダーを合わせましょう

ファインダーの必要性

天体望遠鏡は50倍、100倍というような高倍率を出せる機器です。このため見えている視野が狭くなり、目標物を捜すのはとても難しいものです。 そこで目標物を簡単に捜すための照準器がファインダーです。見たい天体(目標物)にファインダーの照準を合わせることで、天体望遠鏡本体からも 見えるようになります。天体望遠鏡本体の視界とファインダーの視界を事前に一致させておかないと目標物をとらえることができません。

天体望遠鏡による観察の前に、必ずファインダーの光軸を合わせておきましょう。

ファインダーは天体望遠鏡を組立てた段階では照準と天体望遠鏡本体の光軸が合っていません。このため使用する前に光軸の調整が必要です。 ファインダーは一度合わせておけば、狂ったり分解したりしない限り、再度調整をする必要はありません。

◎ 暗視野ファインダー II 7×50の場合

暗視野ファインダー II 7×50の場合、照準として内部に十字線が入っています。十字線の交点と天体望遠鏡本体の視野中心に見える目標物が重なるよう に調整します。ここでは目標物として遠方にある鉄塔の先端をイメージして説明いたします。

"① 天体望遠鏡をのぞいてみましょう"項目 (P22 参照)に従い、200m 以上先にある目標 物を天体望遠鏡の視野の中心に導入します。

※ほとんどの天体望遠鏡において、天体望遠 鏡の視野は倒立像となります。

2 次にファインダーをのぞきます。ファインダーの視界にも、天体望遠鏡の視野に見えているものがどこかに見えるはずです。ただし、この時点では偶然の場合を除いて鉄塔の先端は十字線の交点と重なっていません。

※十字線にピントが合っていない場合は接眼 部を回してピントを合わせてください。 (P27 参照)

※目標物にピントが合ってない場合はファイン ダー対物枠を回してピントを合わせてください (P27 参照)

※ファインダーの視野は倒立像となります。
また状態により十字線は斜めになっていることがありますが問題ございません。

ファインダーをのぞきながら天体望遠鏡本体でとらえた目標物がファインダーの十字線中央に重なるよう に2本のファインダー調整ネジを出し入れして調整します。

一通り調整できましたら、目標物※を変えてファインダーが合っているか試してみましょう。
 ファインダーの十字線の中央に他の目標物を導入します。
 天体望遠鏡を低倍率の接眼レンズでのぞき、ピントを合わせます。
 ファインダーに導入したものが天体望遠鏡の視野にも見えるようになれば調整完了です。

※できる限り遠くにある目標物でファインダーを調整してください。近くの目標物でファインダー を調整すると星空ではファインダーの中央と天体望遠鏡の中央が一致しないことがあります。

以上を行い最終的にファインダーの十字線に合わせたものが天体望遠鏡本体から見えるようになれば調整完了です。十字線に合わせても本体から見えない場合は更に慎重に 1~4 を繰り返してください。また更に高精度調整をする場合は天体望遠鏡の倍率を高くして行います。目安として最低でも 100 倍程度以上で調整すると実用的です。

※十字線はイメージです。製品と異なることがあります。

26

例:Aの調整ネジをゆるめ、Bのネジをゆるめると、 電柱の先端は十字線の中央にきます。

Ⅵ 望遠鏡操作·自動導入

● 暗視野ファインダー II 7×50の暗視野照明装置

星空をのぞくと背景が暗いためファインダーをのぞいても十字線が見えなくなることも珍しくありません。暗視野ファインダー II 7×50は暗視野照明装置を内蔵 していますので、照明を点灯することで十字線が赤く浮かび上がります。

- ●ファインダー側面にある明るさ調整ツマミ(電 源スイッチ兼用)を回すとスイッチ OFF、ON (明るさ無段階調光)ができます。好みの明る さでご使用ください。
- ※電源スイッチの切り忘れにご注意ください。 電池消耗防止のため、ご使用後は必ずスイッ チOFFとなる位置まで回してください。
- ※明るさ調節ツマミに刻印されている"・"と、 本体に刻印されている"・"が上下に並んだ 状態で電源 OFF となります。

※照明が明るいほど電池の消耗が早くなります。また、照明が明るいと星が見えなくなることがあります。お好みに合わせて見やすい明るさでご使用ください。

● 暗視野ファインダー II 7×50のピント合わせ

暗視野ファインダー II 7×50は工場出荷時において、正視で無限遠にピントが合うように調整されています。しかし、近視や遠視の場合ピントが合わないことがあります。ピントが合っていない場合は以下の手順でピントを合わせてください。

● 十字線がはっきり見えない場合

ファインダーをのぞ きながら接眼部先端 をまわして接眼レン ズのピントを十字線 に合わせます。

● 風景・星がはっきり見えない場合

200m程度以上遠方の 目標物※に向けてファ インダー全体としての ピントを合わせます。 ロックリングを十分ゆ るめた後、ピントリン グを回してピント位置 を探します。一番よく 見える状態となりまし

たら調整をやめ、ロックリングを元通りにしめてください。

※ 近くの目標物でピントを合わせると星にピントが合わないことがあります。

Ⅵ 望遠鏡操作·自動導入

◎ XYスポットファインダーⅡの場合

光軸クランプを左に回してゆるめ、大まかに 鏡筒と平行になるように調整した後、光軸ク ランプを右に回してしめて、固定します。

2 天体望遠鏡本体に低倍率となる接眼レンズを取付け、"まず天体望遠鏡をのぞいてみましょう"項目(P23参照)に従い遠距離にある目標物(鉄塔の先端など)を、天体望遠鏡本体をのぞきながら視野にとらえます。

3 XYスポットファインダーIIの明るさ調節ツマミを右に回して赤い点(スポット)を点灯させます。

※スポットの明るさは無段階で調節できますの で、適当な明るさになるまで回してください。

※明るさ調節ツマミに印刷されている "・" と、本体に印刷されている"・"が上下に並 んだ状態で電源OFFとなります。

※暗い環境での使用を想定し、明るさを抑えてあります。昼間や明るい室内ではスポットを確認しにくいことがあります。

対物レンズの中央下部にある突起(対物照準)と、照準指標線が一直線になるところに赤いスポットが点灯していることを確認してください。確認ができ たら、この赤いスポットが、天体望遠鏡本体でとらえた目標物(鉄塔の先端など)に向くように位置を調整します。

※赤い点 (スポット) は正視で使用した時に無限遠でピントが合うようにしてあります。近視などで赤い点にピントが合わない場合はメガネ等をお使いくだ さい。

5 位置微調整は、上下微動ツマミおよび左右微動ツマミで行います。上下微動ツマミと左右微動ツマミを回して調節し、目標物と赤いスポットが重なるように します。

6位置調整が終わりましたら、明るさ調節ツマミをカチッと音がするまで左に回し、電源をOFFにしま す。夜、実際の天体観測をはじめる際などに、再度明るさ調節ツマミを回して赤いスポットを点灯さ せてください。

※明るさ調節ツマミを無理に強く回すと、ファインダーの調整がズレる場合がありますのでご注意ください。

※明るくすると電池の消耗が早くなります。また使用後は電源をOFFにしてください。

│ Ⅵ 望遠鏡操作·自動導入

④ 天体観測を始めてみましょう

ここからはいよいよ天体望遠鏡を夜空へ向けてみましょう。まず見やすい天体から徐々に暗い天体へ目を向けていきましょう。 手始めに、一番身近な天体である月を観測してみましょう。

※注意:観測する時期によって、形、大きさが異なります。

●月を見てみましょう

★時期または時間により見えないことがあります。★現段階で星図は表示されていません。

↓ ファインダーの十字線付近(XYスポットファイ ンダーⅡの場合は赤いスポット付近)に月が見 えるように、スマートフォンにアブリ「STAR BOOK Wireless」を操作して天体望遠鏡を 動かします。

2天体望遠鏡に低倍率の接眼レンズ (=mm数の大きな接眼レンズ)を取りつけてのぞき、フォーカスノブ(合焦ハンドル)を回してピントを合わせます。

3 必要に応じて接眼レンズを交換し、倍率を変えて みます。

天体望遠鏡をそのまま見ていると、日周運動 とント11 により月(他の天体でも同じです)はどんどん動いていき※、視野から外れて見えなくなってしまいます。

※赤道儀が追尾していない状態において。 アプリのズームスライダーを操作して視野の 中央に入れ直してください。

※十字線はイメージです。製品と異なることがあります。

ヒント11: 星の日周運動とは?

星は北極星(正確には天の北極)を中心に して1日約1回転しているように見えます。 (星の日周運動) これは地球が地軸を中心にして1日1回 自転しているために起こるものです。

※のぞく向きなどにより移動の方向は異なります。

⑤ 天体の自動導入

天体の自動導入とは、複数の天体位置情報をアプリに記憶させ、見たい天体を自動的に探す機能です(天体ナビゲーション)。月や明るい惑星など見た目で位置 の分かる天体であれば観察も容易です。しかし非常に暗い惑星や淡い星雲、星団などを見ようとすると見た目だけでは位置が分からないことがあります。 そこで、天体の自動導入機能を利用することにより簡単に見たい天体を視野に導くことができます。

◎ 天体自動導入の仕組み

恒星は見える位置(視位置)が恒星間で相対的に 殆ど動きません。このため、地球上の地図と同 様、天体においても恒星の位置を示す地図に相 当するもの(天体座標)が定義されています。 この座標を利用することで天体の位置関係が 分かれば、他の星の位置を導き出すことができ ます。例えば、カーナビにおけるマップマッチン グ(地図と実際の自車の位置を合わせる作業)と 同様です。

この座標を利用することで天体の位置関係が分か ればほかの星の位置を導き出すことができます。 例えばカーナビゲーションにおけるマップマッチン グ(地図と実際の自車の位置を合わせる作業)と同

P34

)天体自動導入の流れ

I 赤道儀の設置	I 赤道儀の設置 ※南半球で使用する場合は天の南極				
Ⅱ 鏡筒ホーム ポジションの確認	望遠鏡ホームポジション(望遠鏡の最初の形/極軸を北、鏡筒の 対物側を西※)にします。 ※南半球で使用する場合は極軸を南、鏡筒の対物側を東に向けます。	P31			
Ⅲ アライメント (方向設定)	登録されている天体座標上の位置情報と実際に見える星の位置 (視位置)を一致させる設定をします。	P32~34			
Ⅳ 天体の自動導入	アライメントが完了すれば、自動導入によるスターウォッチングが	P34			

可能です。 30 I 赤道儀の設置

●天体望遠鏡を組立て、同頁のいちばん下にある写真を参考に極軸方向が天の北極方向になるように設置します。星雲・星団など長時間露出を必要とする撮影をされない場合は厳密に天の北極に合わせなくてもおおよそ合っていればほとんど影響ありません。※

高度調整ツマミは片方をゆるめて、もう片方をしめながら動かします。方位調整ツマミも同様に動かします。

※ 南半球でご使用の場合は極軸が天の南極方向(方位磁針等を参考に方位が南向き、高度が観測地緯度)となるように設置してください。

※ 天の北極の高度は観測地の緯度に一致しています。

▶Ⅱ ホームポジションの確認

●赤道儀の赤経クランプ、赤緯クランプをゆるめる、またはスマートフォン(アプリ・「STAR BOOK Wireless」インストール済)を使って望遠鏡ホームポジション (望遠鏡の最初の形/極軸を北、鏡筒の対物側を西※)にします。

※南半球でご使用の場合は東向き水平に設置してください。

- ●スマートフォンの時計や位置情報を元に、アプリ「STAR BOOK Wireless」が記憶する天体座標情報とのマッチングを行いますので、この時点で現在真西(南 半球では真東)となる天体座標の1箇所(一つ目の基準点)を機械的に記憶したことになります。このため、次に導入したい天体のおおよその向きに望遠鏡を向け ることができるようになります。(ホームポジションの精度がよければ最低限ファインダーの視野内のどこかに捕らえられるレベルを想定しています)
- ホームポジション時は、次の画像を参考に設置して ください。
- ポジションが定まりましたら赤経・赤緯クランプを しめて固定します。以後、観測終了までクランプは ゆるめません。
- ホームポジションは最初の位置合わせ作業です。
 初期の自動導入の精度にも影響しますので、できるだけ正確に行うことを推奨します。

Ⅲ アライメント(方向設定)

アライメントとは、アプリ「STAR BOOK Wireless」が記憶している天体座標上の位置情報と実際に見える星の位置(視位置)を1対1で一致させる作 業をいいます。ホームポジションの確認作業でおおよその位置(西または東の確認)が既に記憶されていますが、自動導入を行うには精度が不足しており、 高精度な自動導入ができません。アライメントを追加することで自動導入の精度を向上させることができます。

アライメントを本説明書ではこの作業を「アライメントを取得」、また取得したアライメントの数を数えて1点アライメント、2点アライメント・と呼んでいます。

◎ アライメント手順

それぞれ

スマートフォンのアプリ (の)「STAR BOOK Wireless」を起動しま す。しばらくすると、起動画面が表示された後、「鏡筒を西向き水平にし てください・・・」という画面が表示されます。表示に従いホームポジシ ョンを設定してから次に進みます。前回観測時の架台設定を引き続き 使用する場合は、前回の架台設定を使用 をタップします。望遠鏡を再設 置した場合や初めてご使用の場合は前回の架台設定を使用できませ んので、 次へ をタップしてください。

細かな初期設定(任意)を行いたい場合は 初期設定 タップします。

データのダウンロードなどネットによる通信が必要な場合はこちらで 設定します。設定はアブリ使用中の星図画面に表示される のでも設定できますが、彗星データのダウンロードなどインターネット を利用する場合は 初期設定 で行ってください。

次へまたは
前回の架台設定を使用
をタップすると、太陽の注意喚起およびスコープモードへの遷移画面が表示されます。

確認・ はい をタップして次に進むと、画面中心(視野円中央)が真西となる星図が表示されます。※

アプリ画面にある天体選択をタップしアライメント取得に使用する天体の選択に進みます。

※前回の架台設定を使用を選択した場合は表示が異なる場合があります。

※画面中心(視野円中央)が真西になる星図表示は、本製品を初めて使用した場合、またはワイヤレスユニットをリセットした場合です。2回目以降に使用 する場合は、アプリで最後に使用した状態で表示されます。 32

Ⅲ アライメント(方向設定)

2 天体種類選択 メニューが表示されますので、アライメント取得 に使用する天体種類タップします。

恒星を選択すると精度が得られやすくなります。ここの説明では 恒星(恒星名) を選択します。

3「恒星名選択」メニューが表示されますので、アライメント取得に使用する 恒星名(ここでは例として ☆ アルタイル)をタップします。

アライメントに使用する恒星は、必ず名前と実際の夜空に見える位置を知っているものから選んでください。☆マークは観測できる恒星(天体)です。 ☆マークが表示されていない天体(恒星)は地平下にあり導入できません。

4 「自動導入 アルタイルを導入しますか?」というダイアログが表示されますので、導入」 等入 ます。また動作を開始した段階で目標天体(ターゲット)が認識され、画面下に赤経・赤緯座標などが表示されます。

5 導入動作が完了するとスマートフォンの通知音/バイブレーションなどで 通知されます。この時点で天体望遠鏡が目標天体(アルタイル)のおおよそ の方向に向きますが、天体望遠鏡の視野に必ずしも導入されるとは限りま せん。このため、以下の手順で修正します。

Ⅲ アライメント(方向設定)

- 5.1 アプリの星図上でスワイプすると望遠鏡が連動して動作しますので、望遠鏡をのぞきながら視野中央に「アルタイル」を導入していきます※。画面表示を拡大すると速度が遅くなり、細かな修正ができるようになります。
- ※望遠鏡の向きを動かすと「アルタイル」がアプリ画面の視野円から外れま すが、これはアプリの記憶する位置情報と実際の「アルタイル」の視位置 が異なるために起こるものです。

```
アライメントを取得することで
一致します。
```


5-2 基準点となる天体「アルタイル」をファインダーの視野中央に導入し、続いて望遠鏡の視野に導入するとスムーズです。

ファインダーの中心に「アルタイル」を導入後、望遠鏡には低倍率の接眼レンズ(mm数の大きいもの)を用いて視野に導入します。更に、高倍率の接眼レンズ(mm数の小さいもの)に交換して正確に視野の中央に導入しましょう。

5-3「アルタイル」が望遠鏡の視野中央に導入後、 ALGN (Xには数字) をタップします。「アライメント アライメントしますか」ダイアログが表示されますので、 はい をタップします。1点アライメントが完了するとともに、アプリの星図上で「アルタイル」と視野円の中心が一致します。また、自動導入後は必ずSCOPE MODE画面となります。

6 天体を正確に自動導入するには複数のアライメントが必要です。異なる恒星で工程2~5を繰り返し、2点目、3点目・・・とアライメントを追加することで自動導入の精度が向上します。3点以上のアライメントを取得することで実用的な自動導入精度が得られます。

₩ 天体の自動導入

複数アライメントを取得した後は、天体選択メニューなどで見たい天体を自動 導入できるようになります。自動導入した天体は自動追尾され、観測中は視野内 に常時とらえています(星の日周運動はもちろん、惑星や彗星など固有の軌道要 素を持つ天体も追尾できます)。

I アプリ·ファームウェアのバージョンアップ

アプリのバージョンアップはスマートフォンのアプリ・アップデートの手順にて行ってください。スマートフォンの設定により自動的にバージョンアップされる 場合があります。詳しくはスマートフォンの取扱説明書をお読みください。

ファームウェアのバージョンアップは次の手順にて行ってください。

スマートフォンが十分に充電されていることを確認します。ファームウェアのバージョンアップ中に電源が切れると故障する場合がありますので十分ご 注意ください。

↑赤道儀の電源を入れた後、ワイヤレスユニットのランプ 죽 が青であることを確認し、アプリ「STAR BOOK Wireless」 🌍 を起動します。

アプリにファームウェアの新しいバージョンが含まれていた場合、ファームウェアのアップデートを喚起するダイアログが表示されます。
 Wireless Unit UPDATE をタップして次に進むと、ファームウェアアップデートの画面が表示されますので、 OK をタップします。バージョンアップが開始されます(アップデート時間:~5分程度。接続環境に依存)。バージョンアップ中はスマートフォンとワイヤレスユニットを近くに置き、離さないでください。また電源を切らないでください。

35

Ⅱ リセット

ワイヤレスユニットを初期化し、工場出荷時の設定に戻します。無線接続設定(SSID/パスワード) も初期化されますのでご注意ください。(ファームウェアは初期化されません)

リセットボタンを1秒以上長押しすると、ランプが2回点滅し、再点灯します(リセット完了)。SSID/ パスワードを変更せず使用されていた場合は、リセット後に無線接続が自動的に再設定されるこ とがあります。

)応用編

Ⅲ 極軸望遠鏡のご使用方法

◎ 極軸望遠鏡とは

極軸望遠鏡は、赤道儀の極軸を天の北極(南半球では天の南極)へ向け てセッティングするためのレチクル(スケール)入りの望遠鏡です。 赤道儀を使用した望遠鏡システムで星雲や星団などの長時間露出による 撮影をする場合は、写真撮影に対応した正確なセッティングが必要です。 極軸望遠鏡を使用することにより手軽に約3′(分)角以内のセッティング が可能となります。

精密なセッティングをされる場合は、"より精密な極軸合わせ"をお読みください。(P50参照)

※セッティングの前に観測地の緯度と経度を地図やカーナビの位置情報や、 インターネット、アプリなどで調べておいてください。

※高度調整ツマミの微動範囲を越える観測地で使用される場合は、"高緯度 または低緯度地方おけるセッティング"(P53参照)をご覧ください。

注意

●正確なセッティングをしないで撮影をすると、星が画面中央を軸に回転した像、もしくは流れた像になって写り、点像として写すことができません。

●北緯70°以北、および南緯70°以南での極軸設定はできません。

◎ 極軸望遠鏡スケールの記号説明

	夕 称	音味	備老
	-14 10 [,]	705 - 97N	PH -2
	POLARIS	北極星	こぐま座アルファ星(αUMi)
北半	δUMi	こぐま座デルタ星	こぐま座の星座線における北極星 の隣の星
が用の	51Cep	ケフェウス座 51 番星	
の情報	(カシオペア座)	カシオペア座	北半球で、極軸望遠鏡の回転方向の 向きを決める目安として使用します。
	(北斗七星)	おおぐま座の一部	※視野内にカシオペア座 (北斗七星)は見えません。
	σOct	八分儀座シグマ星	北半球における北極星相当で使用 します。
南	τOct	八分儀座タウ星	
干球日	χOct	八分儀座カイ星	
用の情報	(南十字)	南十字星 (みなみじゅうじ座)	南半球で、極軸望遠鏡の回転方向の 向きを決める目安として使用します。
	αEri	エリダヌス座 アルファ星 (Achernar)	※視野内に南十字星、αEriは 見えません。

15…2015年

40…2040年

2014 · · · 2014年

2040 · · · 2040年

※目盛のあるものは5年刻みとなっています。

※北半球と南半球の情報は関連がありません。

◎ 基本操作

暗視野照明(スケールの照明)の点灯・消灯

極軸望遠鏡の点灯スイッチを押すと暗視野照明が点灯し、暗い背景にスケール が赤く浮かび上がります。

暗視野照明はスイッチを入れると、設定範囲(右項参照)で最大輝度となり、 徐々に減光しながら消灯します(実用点灯時間:約1~2分)。

極軸望遠鏡を使用中に消灯した場合は再度スイッチを押して点灯してくだ さい。

暗視野照明の明るさ調整

明るさ調整ダイヤル (スイッチまわりのダイヤル)を回すと8段階で明るさを 調整できます。

極軸望遠鏡をのぞきながらダイヤルを回し、好みの明るさに合わせてご使 用ください。

スケールのピント合わせ

極軸望遠鏡の視野調整環 (アイピース)を回すとスケールのピント位置を変更できます。鏡筒部を手で押 さえながら (※) 接眼レンズをのぞき、もう片方の手で視野調整環をまわしてピントを合わせてください。

※視野調整環だけを持って回すと極軸望遠鏡全体が回転してしまい、スケールにピントを合わせることができませんので、ご注意ください。

電池の交換

明るさ調整ダイヤルを手で押さえながら電池フタ(点灯スイッチ付)を反時計回りにまわして取外します。

- 2 写真を参考に極軸望遠鏡を回してダイヤルが下向きになるようにすると古い電池が落下して取外せます。手でキャッチするなどして落とさないように
 - ご注意ください。

37

3 写真を参考に極軸望遠鏡を回してダイヤルが上向きとし、プラス・マイナス (+・-:極性)に注意して新しい電池(CR2032×1個)を落とし込みま す。電池室の奥になるほう(下側)がプラス(+)となります。

電池フタを元通りに取付けて完了です。
ご使用になる前に点灯することを必ずご確認ください。

◎ 北半球における極軸の合わせ方

北半球の極軸合わせでは、赤道儀の回転軸を天の北極に合わせます。天の北極付近には、北極星(こぐま座α(アルファ)星:POLARIS)、こぐま座δ(デルタ)星(δ UMi)、ケフェウス座51番星(51Cep)があるため、この3星の位置関係を、極軸望遠鏡のスケールと重ねることで極軸を合わせます。補助として、北斗七星、および カシオペア座の視位置を利用します。(ここでは2014年に合わせるものとして説明しています。)

あらかじめ、北極星および極軸を合わせる日時のカシオペア座、北斗七星の見える場所を調べておいてください。

北極星の方角はほぼ真北であり、高度は観測地の緯度付近にあります。

真北は方位磁針などで、緯度については地図などで調べることができます。カーナビやGPSを使用できる場合は、それらの測位機能を利用して、緯度や真北の方向を調べることができます。また、スマートフォン、タブレットPCなどの通信端末を使用できる場合は、地図ソフトなど緯度や真北の方向を調べられる、ア プリケーションソフトウェアを利用する方法もあります。

カシオペア座、北斗七星の探し方については、星座早見盤や天体アプリケーションなどを利用すると大変便利です。

地域によるおおよその緯度(日本国内)は以下の通りです。

地名	経 度 (東経)	緯 度 (北緯)	地名	経 度 (東経)	緯 度 (北緯)	地名	名 経 度 (東経)	緯 度 (北緯)	地名	経 度 (東経)	緯 度 (北緯)
根室	145°35′	43°20′	さいたま	139°39′	35°52′	大演	⋭ 135°51′	35°01′	高知	133°32′	33°34′
札幌	141°21′	43°04′	千葉	140°06′	35°36′	奈良	₹ 135°48′	34°41′	松山	132°46′	33°50′
青 森	140°45′	40°49′	小笠原	142°12′	27°06′	京都	ß 135°46′	35°01′	鹿児島	130°33′	31°36′
盛岡	141°09′	39°42′	東京	100°40/	05°40/	和歌山	4 135°10′	34°14′	奄 美	129°30′	28°23′
秋田	140°06′	39°43′	(新宿)	139 42	35 42	大队	反 135°30′	34°42′	宮崎	131°25′	31°54′
仙台	140°52′	38°16′	横浜	139°38′	35°27′	神戸	⁼ 135°12′	34°41′	大 分	131°37′	33°14′
山 形	140°20′	38°15′	静岡	138°23′	35°59′	鳥耳	۲ <u>34°14′</u>	35°30′	熊本	130°42′	32°48′
新潟	139°02′	37°55′	富山	137°13′	36°42′	松江	I 133°03′	35°28′	福 岡	130°24′	33°35′
長 野	138°12′	36°39′	金沢	136°39′	36°34′	岡山	4 133°55′	34°39′	佐 賀	130°18′	33°16′
甲府	138°34′	35°40′	福 井	136°13′	36°04′	広島	∄ 132°27′	34°23′	長崎	129°53′	32°45′
前橋	139°04′	36°23′	名古屋	136°54′	35°11′	Ц	131°28′	34°11′	那覇	127°41′	26°13′
水戸	140°28′	36°22′	岐 阜	136°46′	35°25′	徳島	₿ 134°33′	34°04′	宮古島	125°17′	24°48′
宇都宮	139°53′	36°33′	津	136°30′	34°43′	高材	a 134°03′	34°21′	石垣	124°09′	24°20′

38

※ 日本各地におけるおおよその経緯度(市庁舎等所在地基準)です。

※ 詳細な経度緯度が必要な場合、および海外で使用する場合は地図やGPS、カーナビの位置情報、インターネットなどでご確認ください。

- 2 北極星が見える水平な固い場所を 選び望遠鏡を設置します。北極星の 見掛け位置や方位磁針などを使い
- ながら、図のように赤道儀の極軸方 向がほぼ北向きになるように望遠 鏡を設置します。また安定した設置 とするため、なるべく架台が水平に なるように三脚の長さを調節して設 置してください。

※北極星が見えない場合は "より精 密な極軸合わせ" をご覧ください。 (P●●参照)

3 極軸キャップ(フロント・リア)を取外します。キャップはねじ込み式に なっており、反時計方向に回すことで取外せます。

※極軸望遠鏡で極軸を合わせる際は必ずウェイト軸を伸ばしてください。 ウェイト軸を収納したままですと極軸望遠鏡の視野が遮られます。

4赤道儀の電源を入れ、スマートフォンアプリ 「STAR BOOK Wireless」で鏡筒を西向き 水平にする画面が表示されるまで進めます。

画面上を指でスワイプすることで赤道儀を 動かすことができます。

- 縱方向:赤緯方向 横方向:赤経方向
- 5 極軸望遠鏡の対物側から極軸内 部をのぞき、画面上を縦方向に スワイプすることで操作して赤 緯軸を回します。内部が貫通して 極軸望遠鏡が見えるようになる まで回してください。
 - ※必ずスマートフォンアプリ 「STAR BOOK Wireless」 で操作してください。 手動では内部の軸を回す ことができません。

貫通している

赤緯

6 高度調整ツマミは赤道儀の前後から互いに押し合うネジとなっていま す。このため片方をゆるめたら片方をしめるという方法で動かします。

7 極軸望遠鏡をのぞきながら極軸望遠鏡(鏡筒部)を回し、1で確認した、実際の空におけるカシオペア座(北斗七星)の視位置と、スケール上に見えるカシオペア座(北斗七星)の向きが目分量で一致するようにしてください。

スケールに刻印されたカシオペア座・北斗七星は、極軸望遠鏡を通さずに見た、実際の星座(星座の一部)が見える方向に対応したもので、極軸望遠鏡スケールの回転方向の向を合わせるための目安です。スケール上におけるPOLARIS、δUMi、51Cepの位置関係とは関連がありませんので、ご注意ください。

以降の手順により、スケール上のPOLARIS、 δ UMi、51Cepを実際の星に近づけて行きます。

8 極軸望遠鏡をのぞきながら、方位調整ツマミと高度調整 ツマミを回して、スケール上にある所定位置に北極星を導 入します。

「POLARIS」表記の近くにある、2014、2040に挟まれた線分の切れ目に、北極星を導入してください。(図参照)

北極星の確認については、付近に明るい星がないので、容易に見分け られます。

極軸望遠鏡のスケールの向きを合わせたら北極星を右図のようにお およそ線の延長線上に導入します。

9 方位調整ツマミは2本で互いに押し合うネジとなっていますので、 片方をゆるめて片方をしめることで方位を微動で動かせます。

18で北極星を導入すると、δUMi、51Cepの目盛付近にもそれぞれの 星が近づきますので、極軸望遠鏡をのぞきながら、極軸望遠鏡(鏡筒 部)を回して、スケール上にあるδUMiおよび51Cepの所定位置に、 それぞれ、こぐま座δ星、ケフェウス座51番星が一番近くなるようにし ます。

それぞれの近くにある目盛りで、15、40表記は、それぞれ2015年、 2040年を表しています。15の側で目盛りが突き出していますが、先 端が2014年に相当します。それぞれの星が、観測する年に一番近い ところに近くなるようにしてください。

北極星を導入すると「 δ UMi」と「51Cep」の目盛付近にそれぞれ星が見えます。

※どちらも5等級台の星なのでスケールが明る過ぎると見え難くなります。

10高度調整ツマミについては 6 を参照してください。

ここで、8で合わせた北極星の位置はずれてしまいますが、問題ありません。

δUMi(4等級)、51Cep(5等級)は明るくないため、夜空の明るい都市部近くだと見えにくい場合があります。しかし 8 が定まった時点でそれぞれの目盛付 近にありますので見分けられます。暗いほうの51Cepがどうしても見えない場合は、δUMiだけでも合わせてください。 ※暗視野照明が明るいと見えにくいことがありますので、この場合は光量を落としてみてください。

13 POLARIS、δUMi、51Cepがスケールの所定位置に収まるまで11、 12を繰り返します。 調整完了後は、方位調整ツマミを両側から軽くしめ、動かないように します(合わせた極軸を動かさないようにご注意ください)。 極軸望遠鏡回転軸 (赤道儀の回転軸の中心) 北極星 (2014年の場合) こぐま座δ星 (2014年の場合) MRS 173p これで北極星は途切れた線の2014側ギリギリにありδUMiと51Cep はそれぞれ目盛の2015側の突き出た部分(図中の〇中)に導入されて 2040 2014 いるので完了です(2014年の場合) PF2 2014 天の北極 51Cepe 40 15 ケフェウス座51番星 (2014年の場合)

◎ 南半球における極軸の合わせ方

南半球の極軸合わせでは、赤道儀の赤経回転軸を、天の南極に合わせます。天の南極付近には八分儀座 σ (シグマ)星、r(タウ)星、 χ (カイ)星(σ Oct、rOct、 χ Oct:以下、八分儀座3星)があるため、この3星の位置関係を極軸望遠鏡のスケールと重ねることで極軸を合わせます。補助として南十字星および α Eri(エリダヌス座 α (アルファ)星:Achernar)の視位置を利用します。(ここでは2014年に合わせるものとして説明しています。)

① 重要:事前に八分儀座を調べることを推奨します

事前に八分儀座3星を調べておくことを推奨します。八分儀座は天の南極付近にある星座で、南半球で極軸を合わせる際に目安として用います。しかし北 半球の北極星(2等級)とは異なり、あまり明るい星がありません。北半球における北極星に相当するのがσOctですが、τOct、χOctともすべて5等級と明る くありません。(参照⇒八分儀座3星の見つけ方)

- あらかじめ八分儀座3星、南十字星とエリダヌス座α星(aEri)の視位置 を調べておいてください。八分儀座3星の方角はほぼ真南であり、高度 は観測地の緯度付近にあります。真南は方位磁針(※1)などで、緯度に ついては地図などで調べることができます。カーナビやGPS、測位アプ リ等を使用できる場合はそれらの測位機能を利用して緯度や真南の方 向を調べることができます。地図ソフトなど緯度や真南の方向を調べら れるアプリケーションソフトウェアを利用する方法もあります。 南十字星とエリダヌス座α星の視位置については星座早見盤(※2)な どでご確認ください。
- (※1)方位磁針の多くは北半球用で製造されています。北半球用の方位 磁針を南半球でご使用されると、針の南側が下がって方位磁針ケ ース内の壁に当たり使用できないことがあります。
- (※2)南半球に対応した星座早見盤(市販品)を推奨します。北半球用星 座早見盤は、南半球では扱いにくかったり当該の星が表記されて いなかったりする場合があります。

2 八分儀座が見える水平な固い場所を選び望遠鏡を設置し、極軸キャップを取り外します。方位磁針などを参考に、赤道儀の極軸がほぼ南向きになるように望遠鏡を設置します。また安定した設置とするため、架台が水平になるように三脚の長さを調節して設置してください。

ヒント13

できるだけ正確に設置してください。天の南極付近では、北半球における北極星のような明るい星がありませんので、見た目による簡易設置が困難です。 初期段階で出来る限り詰めておくことで、八分儀座3星の導入がやりやすくなります。

方位磁針を使用する場合は磁気偏角の影響も考慮することを推奨します。できれば磁気偏角も考慮された電子コンパス(GPS、スマートフォンのアプリケーションソフトウェアなど)の測位機能を利用することを推奨いたします。

海外における磁気偏角につきましては、ウェブサイトMagnetic-Declination.com(http://magnetic-declination.com/)などでご確認ください。

う赤道儀の電源を入れ、スマートフォンアプリ「STAR BOOK Wireless」で 鏡筒を東向き水平にする画面が表示されるまで進めP38を参考に極軸望 遠鏡をのぞける状態にします。 4 極軸望遠鏡スケールの回転方向の向きを合わせます。極軸望遠鏡を のぞきながら極軸望遠鏡(鏡筒部)を回し、1で確認した、実際の空に おける南十字星またはエリダヌス座a星の視位置と、スケール上に見 える南十字星またはエリダヌス座a星(aEri)の向きが目分量で一致 するようにしてください。

① 注意

スケールに刻印された南十字星・αEri(エリダヌス座α星)は、極軸望遠鏡を通さずに見た、実際の星座(星)が見える位置に対応したもので、極軸望遠 鏡スケールの回転方向の向を合わせるための目安です。

45

スケール上における σ Oct、 τ Oct、 χ Octの位置関係とは関連がありませんのでご注意ください。

5 極軸望遠鏡をのぞきながら、方位調整ツマミと高度調整ツマミを回して、スケール上にある所定位置に 八分儀座σ星を導入します。

スケール上の「 σ Oct」の近くにある2014、2040に挟まれた線分の切れ目に八分儀座 σ 星を導入してください。(図参照)

6 5で八分儀座σ星(σOct)を導入すると、τOct、χOctの目盛付近に もそれぞれの星が近づきますので、極軸望遠鏡をのぞきながら、極軸 望遠鏡(鏡筒部)を回して、スケール上にあるτOctおよびχOctの所 定位置に、それぞれ、八分儀座τ星、χ星が一番近くなるようにします

それぞれの近くにある目盛りで15、40表記は、それぞれ2015年、 2040年を表しています。 r Octは15の側で目盛りが突き出していま すが、先端が2014年に相当します。それぞれの星が観測する年に一 番近いところに近くなるようにしてください。

ここで、5で合わせたσ星の位置はずれてしまいますが、問題ありません。

上図の「天の南極」と「極軸望遠鏡の回転中心」を合わせるのが極軸セッ ティングです。「天の南極」には目印が無い為に σ Octと τ Oct、 χ Oct を利用して「天の南極」と「極軸望遠鏡の回転中心」を合わせます。 最終目標は σ Octは途切れた線の 2014 側ギリギリにあり τ Octと χ O ctはそれぞれ目盛の 2015 側の突き出た部分(図中の〇中)に導入する のが目標です(2014 年の場合) 極軸望遠鏡を回転させて「rOct」を2014年の位置 (図中の \bigcirc) に導入 します。

※5等級台の星なのでスケールが明る過ぎると見え難くなります。 するとσOctが途切れた線の延長線上から下にズレてしまいました。

♥ 調整完了後は、方位調整ツマミを両側から軽くしめ、動かないようにします(合わせた極軸を動かさないようにご注意ください)。

参考:八分儀座3星の見つけ方

八分儀座は目立つ星がないため探すのがやや難しいです。しかしながら目立つ天体である小マゼラン雲、南十字座(南十字星)、ケンタウルス座α星、β星など の位置関係を参考に見つけることができます。下記星図を参考に八分儀座3星の探し方をご紹介いたします。

※図は八分儀座付近の星図を表したものですが、季節や時間により見え方(紙面回転方向の向き)が変わりますのでご注意ください。

1 小マゼラン雲と南十字座を利用した方法

小マゼラン雲の中心付近と南十字座β星を直線で結び、ほぼ1:2の比で区切ったところに八分儀座3星があります。

2 南十字座の配列を利用した方法

南十字座のクロスを十字架に見立てた場合の縦棒(α星とγ星で結んだ線分)を小マゼラン雲の方向にほぼ4.5倍伸ばしたあたりに八分儀座3星が あります。

3 小マゼラン雲とみずへび座β星、八分儀座γ星を利用した方法

小マゼラン雲から南十字座の方向に少しだけ目を移動するとみずへび座β星があります。みずへび座β星から更に南十字座方向に進むと八分儀座γ星があります。この星は3つ並んでいる(γ1、γ2、γ3)ため見分けがつきます。この距離を更に南十字座方向に進むと八分儀座3星があります。

◎ 極軸合わせ支援アプリ「PF-L Assist」について

極軸望遠鏡による極軸合わせは、北斗七星、カシオペア座の視位置を利用してスケールの回転方向を定め、所定位置に 北極星、δUMi、51Cepを導入することで行います。(北半球の場合。南半球の場合は、同様に、エリダヌス座α星、南十 字星、および八分儀座σ、τ、χ星で行います。)しかし、観測地の環境によっては北斗七星やカシオペア座が見えないな どで、回転方向の位置を定めることが難しいこともあります。また、星の導入位置が歳差により移動するため、直観的 に分かりにくいこともあります。

そこで、スケールの回転方向の位置、星の導入位置をまとめてイメージできる無料アプリケーションソフトウェア(スマ ートフォン・タブレット端末用)をご用意しております。詳しくは以下サイトをご覧ください。

極軸合わせ支援アプリ **PF-L ASSISt** iOS®版、Android™版無料でダウンロードいただけます。

iOS®とApp Store®は、Apple Inc.の商標です。 Google Play および Google Play ロゴは Google LLC の商標です。

https://www.vixen.co.jp

◎より精密な極軸合わせ(上級者向け)

極軸望遠鏡の据付精度は約3′(分)角です。この精度があれば、眼視観測では目標物が視野から外れることがほとんどありません。また撮影についても35mm判 換算で焦点距離200mm程度以下であれば露出時間5~10分程度までが可能であることを想定しています。

しかし、長時間露出や長焦点で撮影をされる場合は、さらに高精度なセッティングをしなければなりません。より高精度にセッティングするには、星の動きを確認 しながら追加修正を行います。この方法は極軸望遠鏡を使わずに赤道儀を設置する方法でもあるため、北極星が見えない場合や極軸望遠鏡がない場合の極軸 合わせにも応用できます。

① 注意:アライメントについて

この手法による極軸の修正作業はアライメント作業の前に行ってください。アライメント情報があると鏡筒の向きを赤道儀が自動的に修正しますので、極軸のズレ そのものを確認できなくなります。このため、極軸の修正ができなくなります。

◎北半球における設置

■ まず極軸望遠鏡による極軸セッティングを行ってください。2から始めることもできますが、最初に極軸望遠鏡を用いたほうが、修正作業が楽になります。また北極星が見えない場合は極軸望遠鏡を使用できないため、方位磁石などでおおよそ北向きに設置し2から始めてください。

↑方位調整:東西方向を調整します。

🖌 天の赤道付近にある南中前後の明るい恒星を視野に導入し、東西南北を確認するためモーターを止めた状態で星が

流れる方向(西)を確認します。方向が確認 できたら、以後同じポジションで接眼レンズ (接眼部)をのぞきます。ポジションが変わ ると方向も変わるため東西南北がわからなく なることがありますのでご注意ください。正 立像・倒立像であれば反時計方向に回って西 →北→東→南となります。鏡像であれば反時 計方向に回って西→南→東→北となります。

以下、屈折直視の場合でご説明いたします。

赤道儀を恒星時駆動させながら"市販の31.7mm径十字線入り接眼レンズ"を用いて赤道付近にある南中前後の明るい恒星の動きを観察します。モータ ーで追尾させているうち、星が南北に移動することがありますのでこのとき以下の要領で方位調整ツマミを調整します。

鏡筒と星の関係	視野の見え方(倒立像)	方位修正方向
鏡筒が南、恒星が北へ移動	恒星が北へ移動。倒立像のため見かけ上は視野の下に移動して見えます。	極軸方位を東に修正
鏡筒が北、恒星が南へ移動	恒星が南へ移動。倒立像のため見かけ上は視野の上に移動して見えます。	極軸方位を西に修正

※視野の中の星が東西方向にわずかに移動することがありますが、方位調整の作業には影響ありませんのでそのまま続けてください。

最終的に視野の中で星が南(視野の上)・北(視野の下)に移動しなくなった時点で方位調整の完了です。

高度調整:高度方向を調整します。

東または西の空で天の赤道付近にある明るい 恒星を視野に導入し、東西方向の調整と同様、 視野の中での東西南北を確認します。ここでは 東の恒星の動きを観察した例で説明します。

2と同様に赤道儀を恒星時駆動させながら十字線入り接眼レンズを用いて行います。また十字線入り接眼レンズのスケール1辺を西に流れる向きと平 行にしてください。

東の恒星を選んで動きを観察します。

モーターで追尾させているうち、星が南北に移動することがありますのでこのとき以下の要領で高度調整ツマミを調整します。

鏡筒と星の関係	視野の見え方(倒立像)	方位修正方向
鏡筒が低く、恒星が高い方	恒星が北へ移動。倒立像のため見かけ上は視野の右下寄りに	極軸高度が高いため極軸高度
(または北)へ移動	移動して見えます。	を低く修正
鏡筒が高く、恒星が低い方	恒星が南に移動。倒立像のため見かけ上は視野の左上寄りに	極軸高度が低いため極軸高度
(または南)へ移動	移動して見えます。	を高く修正

最終的に視野の中で星が南(視野の左上)・北(視野の右下)に移動しなくなった時点で高度調整の完了です。

◎南半球における設置

◎原則として北半球におけるセッティングと同じ流れとなります。ただし星の動きに対する東西南北のイメージが北半球と逆になります。 ※赤道儀を設置する向きが北半球の場合と180°反対になります。また星が動く方向も馴染みがない場合がありますので、感覚的に東西南北を間違えない ようにご注意ください。以下、屈折直視の場合でご説明いたします。

方位調整:真北方向で天の赤道付近にある(北半球における南中前後に相当)明るい恒星で行います

視野の中の星が東西方向に移動することがありますが方位調整作業には影響ありませんのでそのまま続けてください。 最終的に視野の中で星が南(視野の下)北(視野の上)に移動しなくなった時点で方位調整は完了です。

高度調整:東または西の空で天の赤道付近にある明るい恒星で行います。下記は東の恒星を利用した場合です。

鏡筒と星の関係	視野の見え方(倒立像)	方位修正方向
鏡筒が低く、恒星が高い方	恒星が南に移動。倒立像のため見かけ上は視野の左下寄りに	極軸高度が高いため極軸高度
(または南)へ移動	移動して見えます。	を低く修正
鏡筒が高く、恒星が低い方	恒星が北に移動。倒立像のため見かけ上は視野の右上寄りに	極軸高度が低いため極軸高度
(または北)へ移動	移動して見えます。	を高く修正

最終的に視野の中で星が南(視野の左下)・北(視野の右上)に移動しなくなった時点で高度調整の完了です。

◎高緯度または低緯度地方におけるセッティング

AXJ赤道儀WLの工場出荷時の極軸高度は、日本国内での使用(緯度35°付 近)を想定した角度に設定されています。このため、海外などご使用の地方 によっては高度調整範囲を外れるため、範囲を変更する必要があります。 高度調整範囲は、固定ネジの位置により3段階(H:高緯度、M:中緯度、L:低緯 度)に変更できます。

高緯度	(H)	:	40度から70度	
中緯度	(M)	:	20度から50度	(工場出荷時は中緯度に設定されています)
低緯度	(L)	:	0度から30度	

① 注意

日本国内で使用する場合は工場出荷時のままの設定(中緯度) でご使用ください。

▲高度調整範囲を変更する場合、安全のため鏡筒、ウェイトをすべて取外します。

2写真を参考に、赤道儀側面にある緯度対応のネジを、付属の六角レンチ 5mmで取外します(ネジは左右両側面にあります)。

初期状態では緯度指標M(中緯度)の位置となっています。

ネジを取外すとワッシャーが2枚同時に外れます。紛失には十分ご注意く ださい。

3 写真を参考に、赤道儀を手で支えながら赤道儀側面にある長穴のところのネジを付属の六角レンチ5mmで少しだけゆるめます(ネジは左右両面にあります)。ネジをゆるめると、赤道儀の自重により急激に落下することがありますので、手でしっかり支えつつ、様子を見ながらゆっく

りと慎重に行ってくだ さい。

4 合わせたい緯度指標のネジ穴をのぞきながら赤道儀の高度を調整し、ネジ 穴が揃うところで止めます。ここで、3でゆるめた長穴のネジを付属の六角レ ンチ5mmでしめて固定します(左右両側面)

52で外したネジを4で合わせたネジ穴に通し、六角レンチ5mmでしめ ます(ワッシャーも忘れずに取付けてください)。ゆるまないようにしっか りしめて固定してください(左右両側面)。

◎注意

※xq赤道儀は重いので急に傾けたりしないようにご注意くださ い。故障やケガの危険があります。

※北緯70度以北(南半球の場合は南緯70度以南)での極軸設 定はできません。

Ⅳ オートガイダー

天体望遠鏡にガイドスコープ、CCD/CMOSカメラ、外部オートガイドアダ プター ヒント15 などを有線接続して、オートガイドをすることができます。

ヒント15

CMOSカメラVA225C(別売) SBIG社製STシリーズなどが接続可能です。

◎ AXJ赤道儀WL スペック

赤経微動 ウォームホイールによる全周微動、Ø114.5mm・歯数225山、材質:真鍮 赤緯微動 ウォームホイールによる全周微動、Ø98mm・歯数192山、材質:真鍮 ウオーム軸 Ø15.5mm、材質:真鍮 ウオーム軸 Ø40mm、材質:炭素鋼 赤経軸(極軸) Ø40mm、材質:炭素鋼 赤線軸 Ø40mm、材質:炭素鋼 ペアリング数 14個 ウェイト軸 Ø25mm・本体収納式 極軸望遠鏡 内蔵式5倍20mm・実視界10°、自動消灯式暗視野照明内蔵(8段調光付)、約3′角以内 スケール:3星導入式・歳差補正付(~2040年) 北半球:北極星、るUMi、51Cep 南半球: oCot、r Oct、x Oct) 電源:CR2032電池×1個(モニター電池付属) 方位角範囲 粗動360°、微動:約±5°、ダブルスクリュー式微動ネジ付:1回転約1.7° 極軸傾斜角範囲 高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
赤緯微動ウォームホイールによる全周微動、¢98mm・歯数192山、材質:真鍮ウオーム軸体15.5 mm、材質:真鍮赤経軸(極軸)ん40mm、材質:炭素鋼赤縫軸々40mm、材質:炭素鋼ペアリング数14個ウェイト軸ゆ25mm・本体収納式極軸望遠鏡内蔵式5倍20mm・実視界10°、自動消灯式暗視野照明内蔵(8段調光付)、約3′角以内 スケール:3星導入式・歳差補正付(~2040年) 北半球:北極星、るUMi、51Cep 南半球:のCot、rOct、\chiOct) 電源:CR2032電池×1個(モニター電池付属)方位角範囲粗動360°、微動:約±5°、ダブルスクリュー式微動ネジ付:1回転約1.7°極軸傾斜角範囲高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
ウォーム軸Ø15.5 mm、材質: 真鍮赤経軸(極軸)Ø40mm、材質: 炭素鋼赤縫軸Ø40mm、材質: 炭素鋼ペアリング数14個ウェイト軸Ø25mm·本体収納式極軸望遠鏡内蔵式5倍20mm·実視界10°、自動消灯式暗視野照明内蔵(8段調光付)、約3′角以内 スケール: 3星導入式・歳差補正付(~2040年) 北半球:北極星、るUMi、51Cep 南半球: のCct、r Oct、x Oct) 電源: CR2032電池×1個(モニター電池付属)方位角範囲粗動360°、微動: 約±5°、ダブルスクリュー式微動ネジ付: 1回転約1.7°極軸傾斜角範囲高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
赤経軸(極軸)Ø 40mm、材質:炭素鋼赤経軸Ø 40mm、材質:炭素鋼ベアリング数14個ウェイト軸Ø 25mm·本体収納式極軸望遠鏡内蔵式5倍20mm·実視界10°、自動消灯式暗視野照明内蔵(8段調光付)、約3′角以内スケール:3星導入式・歳差補正付(~2040年) 北半球:北極星、るUMi、51Cep 南半球:oOct、rOct、XOct) 電源:CR2032電池×1個(モニター電池付属)方位角範囲粗動360°、微動:約±5°、ダブルスクリュー式微動ネジ付:1回転約1.7°極軸傾斜角範囲高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
赤緯軸\$\phi40mm\$, \text{df}\$; \text{df}\$; \text{df}\$\text{vpv/by}14@\$\phi25mm\$, \text{vp}3mm\$, v
ペアリング数 14個 ウェイト軸
ウェイト軸 <i>ϕ</i> 25mm·本体収納式 極軸望遠鏡 内蔵式5倍20mm·実視界10°、自動消灯式暗視野照明内蔵(8段調光付)、約3′角以内 スケール:3星導入式・歳差補正付(~2040年) スケール:3星導入式・歳差補正付(~2040年) 北半球:北極星、るUMi、51Cep 南半球:σOct、rOct、χOct) 南半球:σOct、rOct、χOct) 電源:CR2032電池×1個(モニター電池付属) 方位角範囲 粗動360°、微動:約±5°、ダブルスクリュー式微動ネジ付:1回転約1.7° 極軸傾斜角範囲 高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
極軸望遠鏡内蔵式5倍20mm・実視界10°、自動消灯式暗視野照明内蔵(8段調光付)、約3′角以内スケール:3星導入式・歳差補正付(~2040年) ホ半球:北極星、るUMi、51Cep 南半球:σOct、rOct、xOct) 電源:CR2032電池×1個(モニター電池付属)方位角範囲粗動360°、微動:約±5°、ダブルスクリュー式微動ネジ付:1回転約1.7°極軸傾斜角範囲高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
スケール:3星導入式・歳差補正付(~2040年) 北半球:北極星、δUMi、51Cep 南半球:σOct、rOct、χOct) 電源:CR2032電池×1個(モニター電池付属) 方位角範囲 粗動360°、微動:約±5°、ダブルスクリュー式微動ネジ付:1回転約1.7° 極軸傾斜角範囲 高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
北半球:北極星、δUMi、51Cep 南半球:σOct、rOct、χOct) 電源:CR2032電池×1個(モニター電池付属) 方位角範囲 粗動360°、微動:約±5°、ダブルスクリュー式微動ネジ付:1回転約1.7° 極軸傾斜角範囲 高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
南半球: σOct、rOct、χOct) 電源: CR2032電池×1個(モニター電池付属) 方位角範囲 粗動360°、微動: 約±5°、ダブルスクリュー式微動ネジ付: 1回転約1.7° 極軸傾斜角範囲 高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
電源:CR2032電池×1個(モニター電池付属) 方位角範囲 粗動360°、微動:約±5°、ダブルスクリュー式微動ネジ付:1回転約1.7° 極軸傾斜角範囲 高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
方位角範囲 粗動360°、微動:約±5°、ダブルスクリュー式微動ネジ付:1回転約1.7° 極軸傾斜角範囲 高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
極軸傾斜角範囲 高度0~70°(微動範囲±15°)、目盛5°間隔、3段階使用可(高緯度、中緯度、低緯度対応)
ダブルスクリュー式微動ネジ付 : 1回転約0.7°
駆動 パルスモーターによる電動駆動(ベルトドライブ式)、マイクロステップ駆動(約300pps)
自動導入・追尾 ワイヤレスユニット+スマートフォン(専用アプリ)による自動導入、最高約800倍速(対恒星時)、高精度追尾
搭載可能重量 約2~22kg(モーメント荷重50~550kg·cm : 不動点より25cmで約2~22kg)
コントローラー接続端子 D-SUB9PINオス
電源端子 DC12V EIAJ RC5320A Class4(統一規格)センタープラス
電源·消費電流 AXJ赤道儀WL本体+ワイヤレスユニット:DC12V·0.3~2.0A(標準約12kg搭載時)·0.4~2.2A(約22kg搭載時:最大搭載)
大きさ 420×466×138 mm(突起部を除く)
重さ 約17.4kg(ウェイトを含まず)
ウェイト 1.5kg×1、3.5kg×1
他オプション(別売) プレートホルダーSX、SXG-HAL130三脚、SXGハーフピラー、ピラー脚SXG-P85DX、
AXJ-TR102変換ADセット(AXD-TR102三脚に搭載するアダプター)
電源(ACアダプターPD12V-3A、12Vポータブル電源〈シガーソケット対応〉(社外品〕)

◎ ワイヤレスユニット スペック

仕様は改良のため、予告なく変更する場合がございます。

	ワイヤレスユニット
機器種類	無線式赤道儀コントローラーユニット
搭載CPU	32bit CISC Processor 120MHz
架台接続端子	D-SUB 9PIN メス
オートガイダー端子	6極6芯モジュラージャック(外部オートガイダー用)
無線LAN機能	専用アプリケーションソフトウェアによりスマートフォンをユーザーインターフェースとして使用
専用アプリ動作環境	対応OS:Android 6以上、iOS 9.0以上※
	・無線LAN規格:IEEE 802.11b/g/n
	・データ暗号化方式:WPA2-PSK
	※条件を満たしている場合でも使用できない可能性があります。
	ご使用の際は必ず事前にアプリの動作をご確認ください。
電源	架台から供給
動作電圧·消費電流	DC12V 0.1A(最大)
動作温度	0~40°C
機能・その他	無線LAN接続によるバージョンアップに対応
	AXJエンコーダーとは併用できません。
大きさ・重さ	56×36×19.5mm · 40g

仕様

※改良のため予告なく仕様変更することがあります。

◎ AXJ赤道儀本体寸法図

57

※改良のため予告なく仕様変更することがあります。

◎ ASG-CB90三脚(別売)寸法図

◎ ピラー脚SXG-P85DX(別売)寸法図

F	● FAQ(質問編)				
質問No.	質問	回答			
Q 1	倍率は何倍まで高くできますか?	むやみに高倍率にしても暗くて見えにくくぼんやりとするだけです。鏡筒の種類にもよりますが、 目安として最大でも対物有効径をmm数で表した数値の2倍まで(口径100mmなら200倍ま で)を目安としてご使用ください。			
Q 2	初心者ですが、どんな天体が見えますか?	鏡筒の種類によって変わりますが、月面のクレーター(凹凸)、水星・金星の満ち欠け、木星の四大 衛星・縞模様、土星の輪などであれば観察できます。また星団も観察できます。星雲や彗星も観察 できますが、その多くは極めて淡い見え方をします。このため街灯の影響を受けない郊外などの環 境下でないと殆ど見えません。また星雲を見るには経験が必要となります。個人差はありますが、 初めての方だと星雲は分からないことが多いようです。(トラブル編Q14T参照)(※1)			
Q 3	写真にあるような鮮やかな星雲が見たいので すが、どうすれば見えますか?	鮮やかな星雲の姿は写真でしか見ることができません。(トラブル編Q14T参照)			
Q 4	シーイングとは?	星像の揺らぎ(シンチレーション)の程度を表す言葉です。大気の状態によっては観察対象がユ ラユラと動いて見えることがあります。これは地球の大気の影響によるものです。シーイングが 悪いと惑星の模様などがよく見えません。大気の状態が安定している時(星が瞬いていない夜 など)に観察することをおすすめします。			
Q 5	筒内気流とは?	鏡筒の観測環境における温度順応(外気へのなじみ)が不十分だと鏡筒内部で空気のゆらぎが 起こります。これを筒内気流といいます。ゆらぎがおさまる前に見ると星などを見た際に"かげろ う"のように見えてしまい、よく見えなくなります。時間をかけて外気に十分なじませることで改 善します。			
Q 6	自動導入とは何ですか?	目標として選んだ天体を望遠鏡の視野内に見えるように導く機能です。位置がわからない天体 でも自動的に視野に導けるため大変便利です。(P30参照)			
Q 7	どうすれば自動導入できるのですか? 難しい設定はありませんか?	複数の星をアライメント(方向設定)することで自動導入できるようになります。 作業そのものは本書を参考に進めていただくだけで簡単に設定できます。但し基礎知識として 代表的な星空、星座などの知識(小中学校の2025年学習指導要領程度)が必要です。			
Q 8	自動追尾とは何ですか?	天体の運動(日周運動または固有運動)にあわせて赤道儀を動作させることで視野内に目標として捕えた天体を追尾する機能です。高倍率での観望や長時間露出を必要とする星雲などの 写真撮影では必須です。			
Q 9	アライメントとは何ですか?	アプリ「STAR BOOK Wireless」が記憶する天体座標上の位置情報と実際に見える星の位置(視位置)を一致させる作業のことです。カーナビゲーションにおけるマップマッチングに相当します。			
Q10	彗星の核を自動追尾できますか?	彗星に限らず、惑星や人工衛星など目標天体を自動導入することでそれぞれの天体固有の運動 を追尾するようになります(※2、※3 P60参照)。			
Q11	自動導入の精度はどのくらいですか?	初めて使用される方が約40倍の視野のどこかに導入できることを想定しております。			
Q12	自動導入速度は何倍速ですか?	最高約800倍速です(対恒星時)。但し搭載機材の重量が大きいと遅くなることがあります。 設定で800倍速以下に変えることもできます。			
Q13	赤道儀のモーターは何PPSですか?	約300PPSで動作しております(天体追尾時)。			
Q14	赤道儀のコントローラー接続端子は D-SUB9PINのようですが、ここから パソコン接続して制御できるのでしょうか?	パソコンと接続すると故障しますので絶対に接続しないでください。			
Q15	赤道儀は-30℃の環境で使用できますか?	赤道儀の動作可能温度は0~40℃です。			
Q16	赤道儀の動作可能電圧は?	10~15Vまで動作できます(12Vを推奨)			
Q17	電源として発電機を使用できますか?	電源電圧が不安定となることがありますので推奨できません。電圧が不安定な電源を使用すると正常 動作できないことがあります。12Vバッテリーなど安定した電源のご使用を推奨いたします。(※4)。			

F .	● FAQ(質問編)			
質問No.	質問	回答		
Q18	自動車のシガーソケットから電源を取れます か?	推奨しておりません。赤道儀の消費電力を考慮するとバッテリーが上がる危険があります。また通 電中にエンジンをかけると電圧が不安定となることがあり正常動作できないことがあります。 付属のシガーコードは12Vバッテリーなどから電源を取る目的で付属しているものです。		
Q19	乾電池(バッテリーBOX単一8本用)で動作 できますか?	乾電池では十分な電力が得られず動作できません。		
Q20	AXJ赤道儀WLはパソコン制御できますか?	ワイヤレスユニットにて、ASCOM対応天文ソフトウェア(社外品)による無線LAN制御に対応して おります。ソフトウェア「ASCOMプラットフォーム」は社外で提供されているPCソフトウェアです。 対応には、弊社WEBサイトでダウンロード提供している「ワイヤレスユニット用ASCOMドライバー」 が必要です。 ASCOM対応ソフトウェアなどの使用方法など詳細につきましては、ソフトウェアに付属の説明書 にてご確認ください。		
Q21	オートガイダーには対応していますか?	対応いたします。ワイヤレスユニットのA.G.(オートガイダー端子)にCMOSカメラVA225C(別売) またはSBIG社製オートガイダーを接続することで、パソコンから制御できます。		
Q22	ワイヤレスユニットはバージョンアップに対 応しますか?	スマートフォンアプリ「STAR BOOK Wireless」のバージョンアップで対応できます。 バージョンアップは随時ホームページでご案内いたします。(P35参照)		
Q23	STAR BOOK TENコントローラーと STAR BOOK ONEコントローラーに 互換性はありますか?	互換性がございます。		
Q24	不動点とはどこのことでしょうか?	赤経の回転中心軸と赤緯の回転中心軸が交差するところです。(P57図参照)。赤経軸または 赤緯軸を回転させても位置が移動しないことから不動点と呼ばれます。		
Q25	モーメント荷重とは何ですか?	カのモーメントとも呼ばれ、力学における質点に回転運動を与える働きをいいます。ここでは赤 道儀に搭載する機材重量が赤道儀の赤経軸に与える回転運動への働きとし、弊社では以下の ように定義しています。 モーメント荷重=(不動点から搭載機材重心までの赤緯軸方向最短距離cm)×(搭載機材※の 重量kg)※ウェイト重量は計算に含みません。		
Q26	SX赤道儀、GP赤道儀などのウェイトを取付 けできますか?	ウェイト軸の直径が異なります(φ20mm)ので取付けできません。		
Q27	AXD2赤道儀、アトラクス赤道儀、ニューアト ラクス赤道儀のウェイトを取付けできますか?	取付けできます。 (φ25mm)		
Q28	他社製鏡筒を取付けできますか?	筒受けの図 (P57参照)を参考にご確認ください。		
Q29	電源端子の規格を教えてください。	統一規格 DC12V EIAJ RC5320A Class4 (センタープラス)となっています。		

※1:天体は季節や時間、観測地によっては見えないことがあります。また自然物ですので想定外の変化により見えなくなることがあります。

※2:人工衛星、彗星については公開されている最新の軌道要素が設定済であることを前提とします。

※3:人工衛星については動作が極めて速いことがあり、軌道要素が正しくても自動導入・追尾できないことがあります。

※4:バッテリーによっては過放電保護回路になどの作用によりご使用いただけないことがあります。市販のバッテリーをご使用の際は十分にご注意ください。

※5:ウェイトレス構造をとっているため、搭載可能最低重量設定がございます。1.3kg(SX2赤道儀WLの場合1.2kg)以下の搭載機材ですと重量バランスが取れませんのでご注意ください。

※6:搭載可能重量はあくまで設計値です。

※7:あくまで設計値であり、製品では若干の個体差がございます。厳密な値が必要な場合は現物にてお確かめください。

F	● FAQ(トラブル編)					
質問No.	トラブル内容	原因	対策			
Q1T	全く見えません(望遠鏡視野	本体キャップを外していません。	本体キャップを取り外してください。			
	が長つ喧り	ミラー切替ハンドルが不適当な位置にあります(フリップ ミラーをご使用の場合)。	切り替えレバーを反対にしてみてください。			
Q2T	全く見えません(望遠鏡視野	接眼レンズをさし込んでいません。	接眼レンズをさし込んでください。			
	ELBA J (VIS)	ピントを合わせていません。	合焦ハンドルをゆっくり回してピントを合わせてください。			
		ファインダーの光軸が合っていません。	P26~を参考にファインダーの光軸を合わせてご使用ください。			
		目標が視野に導入できていません。天体望遠鏡では倍 率が高いため、おおよその方向を定めても目標が視野内 に収まらないことがあります。	低倍率の接眼レンズを使用し、またファインダーと併用し て慎重に導入してみてください。			
		観察する目標物までの距離が近すぎます。天体望遠鏡は 無限遠にある目標物を観察する目的でできています。こ のため200m程度以内の近距離には必ずしもピントが合 うとは限りません。	最低でも200m以上遠方の目標物をのぞいてください。			
		接眼部バーツの接続が適切でありません。	本書または取付けるパーツの説明書を参考に接続が適 切であるかどうかをよくお確かめのうえ、再度接続してみ てください。			
Q3T	ファインダーからは見えます が、望遠鏡本体では何も見え ません。	望遠鏡をお買い求めの当初はファインダーの光軸は合っ ていません。また久しぶりにご使用される場合やファイン ダーを取外したことがある場合は光軸が狂っていること があり、ファインダーで合わせても望遠鏡本体で見えな いことがあります。	P26~を参考に明るい昼間のうちにファインダーを調整 してから天体観測にご使用ください。			
Q4T	ぼやけてよく見えません。	天体の種類や観察の目的によって適正な倍率も変わりま す。むやみに高倍率にしてもよく見えるものではなく、か えって暗くぼんやりとしてしまいます。低倍率で見たほう が鮮明に見えます。	適正な倍率(有効な最高倍率以下)で観察してください。 鏡筒の種類にもよりますが、目安として対物有効径をミリ 数で表した数値の2倍までが有効な最高倍率と言われ ています。(例:口径100mmであれば最高でも100×2 =200倍まで。)			
Q5T	像が逆さまに見えます。	天体望遠鏡でのぞいた像は必ずしも実際の上下左右と 一致していません。天地逆に見えることもございます。特 に屈折式望遠鏡、カタディオプトリック式鏡筒などで直視 でのぞくと倒立像となります。	異常ではありません。			
Q6T	自分の目が見えます。	接眼レンズをさし込んでいません。	接眼レンズをさし込んでください。			
Q7T	星を見ても大きく見えません。	星(恒星)は大きさが感じられないほど遠くにあり、拡大し ても点にしか見えません。	異常ではありません。			
Q8T	低倍率だと見えるのに高倍率 だと見えません。	光学機器ではその種類にかかわらず倍率に比例して像 が暗くなりぼんやりとする性質があります。このため、高 倍率だとよく見えなくなることがあります。	適正な倍率で観察してください(Q4T参照) 特にバローレンズなどを用いると過剰倍率になりやすく なりますのでご注意ください。			
		天体望遠鏡は視野の中心を拡大して見る機器です。また 、高倍率にすると視野が狭くなりますので、対象物が十分 に中心付近に寄せていないと、高倍率とした際に見えな くなる(目標物が視野から外れる)ことがあります。	低倍率の状態で目標物を十分視野の中心に寄せてから 高倍率の接眼レンズと交換してください。			
		大気の影響を受けたり望遠鏡の観測環境における外気 への温度順応が十分でないと"かげろう"のように見えて よく見えないことがあります。高倍率となるほど顕著にな りますので、低倍率の時のみ見えたものと思われます。	Q10T参照			
		望遠鏡の観測環境における温度順応(外気へのなじみ) が足りません。望遠鏡はわずかながら温度により膨張収 縮を起こします。このため温度順応が十分でないと本来 の性能を発揮できないことがあります。	+分温度順応させることでよく見えが改善されます。 対物レンズ3枚以上の屈折望遠鏡、カタディオプトリック 式望遠鏡、大口径望遠鏡(口径15cm以上)では温度順 応にかなり長時間かかることがあります(3時間程度~)			

● FAQ(トラブル編)					
質問No.	トラブル内容	原因	対策		
Q9T	惑星の細かな模様が見えませ ん。	大気の影響を受けたり望遠鏡の観測環境における外気 への温度順応が十分でないと"かげろう"のように見えて よく見えないことがあります。	Q8T·Q10T参照		
		見ている天体の高度が低いと大気の影響を受けやすく、 よく見えないことがあります。また惑星からの光が大気中 で屈折することにより色にじみが見えることもあります。	高度が高い時に見るとよく見えます。但し惑星の見える 位置に制限があり高い高度を望めない場合は日を改め るなどしてください。		
		惑星観測に慣れていないと、よく見えないことがあります。	観測を繰り返し行ってみてください。個人差もありますが、 慣れてくると細部が見えるようになります。		
		惑星は公転していますので、時期により地球からの距離や 角度が大きく変化することがあります。このため、細部模様 の見え方も変わります。また自然のものですので、模様が 変わることもあり、目立つ模様がないこともあります。	市販天文誌などの情報をもとに観測してみてください。 また、例えば火星であれば接近時と最遠の時とではかな り見え方が異なります。また土星であれば見える角度も 変わるため、輪が見えたり見えなかったりすることがあり ます。		
		市販天文誌などに掲載の写真レベルまでは望めません。 これら写真の殆どは特殊な技法を駆使して撮影されたも のです。	異常ではございません。		
Q10T	星がゆらゆらとかげろうのよう に見えます。	望遠鏡が観測環境において外気に温度順応していない (なじんでいない)ため筒内気流と呼ばれる"ゆらぎ"現象 が生じ、かげろうのように見えるものです。天体望遠鏡で あれば機種にかかわらず起こる現象ですが、特に大口径 の望遠鏡や対物レンズ構成枚数の多い望遠鏡(対物レ ンズが3枚以上の機種)では顕著です。	機種や環境にもよりますが、ご使用前に最低限1時間以 上外気になじませることで温度順応が進み、よく見える ようになります。大口径の望遠鏡やレンズ構成枚数の多 い望遠鏡(対物レンズ3枚以上)では外気になじむまで に3時間以上かかることがあります。		
		部屋の中から観測していませんか?部屋の中から観測す ると室内外で空気の出入りによる"ゆらぎ"が生じますの で、かげろうのように見えます。	屋外で観測してください。		
		大気のゆらぎ(気象現象)が影響することがあります。日本国内ですと特に秋~冬~春にかけて大気の条件が悪くなり、見にくくなる傾向があります。 また大口径の望遠鏡ほど大気のゆらぎの影響を敏感に受けます。このため性能に反して口径が小さな望遠鏡の ほうがよく見えることもあります。	星が瞬いていませんか?瞬きの少ない日に観察すればも っとよく見えます。星がまたたいて見える日は拡大しても よく見えませんので、この場合は日を改めて観察したり、 低倍率で観察してみてください。		
Q11T	星を見ると光の筋が見えます。	ニュートン反射式望遠鏡やカタディオプトリック式望遠鏡 では鏡筒内部にスパイダーと呼ばれる副鏡支持金具が あります。ここを通った光は回折という光学現象を生じま すので、この影響で見みえたものです。上記望遠鏡の性 質上避けることができません。	異常ではありません。		
Q12T	左右が逆に見えます。	フリップミラーや天頂プリズムで望遠鏡の光路をまげて 観察すると鏡像に見えます。	フリップミラーや天頂プリズムを使用しない、またはフリッ ブミラーの直視側で見ることで倒立像(正常)となります。 直視で見た場合は倒立像になります。		
Q13T	レンズが汚れています。ゴミの ようなものが見えて、油が流れ るように少しずつ動いているの が見えます。	接眼レンズを回してもゴミが一緒に回らない場合は、目の 中のホコリや僅かなキズが見える生理現象です。日常の 生活でも起こりますが、目立たないため気がつかないも のです。望遠鏡や双眼鏡、顕微鏡など光学機器をのぞく と気がつくことがあります。	異常ではありません。		
Q14T	鮮やかな星雲を期待してのぞ いたが何も見えません。	星雲の発光は極めて淡く、慣れないと見つけることがか なり困難です。また街灯の影響がある都市部(目安として 懐中電灯なしでも支障なく夜道を歩ける環境)では殆ど 見えません。 肉眼で見た場合はそこにタバコの煙があるような"気が する"というような具合で非常に淡い見え方をします。 写真集などにある鮮やかな星雲の姿は写真で長時間か けて光を集めた結果得られたものです。	星雲の姿を肉眼で観察するには環境と経験が必要です。 山や郊外など街灯の影響を受けにくい場所に出かけた 際に観察してみてください。最初はわかりにくいかも知れ ませんが、何度も観察するうちに淡い光が見えるように なってきます。		

F	● FAQ(トラブル編)					
質問No.	トラブル内容	原因	対策			
Q15T	赤道儀が作動しません。	赤道儀のスイッチが入っていません。	赤道儀のスイッチを入れてください。			
		バッテリーが充電不足または消耗しています(バッテリー をご使用の場合)。	バッテリーを充電するか、または充電済みのバッテリーと 交換してください。(※4 : P60)			
		赤道儀の赤経赤緯クランプがゆるんでいます。	赤経赤緯クランプをしめてください。			
		極性が間違っています(バッテリーなどで自分で極性端 子を接続した場合)。	極性をもう一度お確かめください。			
		電源をつないでいません。	赤道儀に正しく電源を繋いでください。			
		電源接続端子またはワイヤレスユニットのコネクター(コ ントローラーのケーブル)がゆるんでいるかまたは外れ ています。	接続端子を確実に接続してください。			
Q16T	赤道儀を使用中に電源が落ち ます。	ご使用の電源が対応していないため、十分な電力が得ら れていません。	対応の電源をご使用ください。赤道儀は12V・2.5A程度以 上で動作いたします。12V・3A以上の電源を推奨します。			
		バッテリーが充電不足または消耗しています(バッテリー をご使用の場合)	バッテリーを充電するか、または充電済みのバッテリーと 交換してください。(※4:P60)			
Q17T	コントローラーを動かすと星が 反対に移動します。	天体望遠鏡で覗いた像は必ずしも上下左右が実際と一 致していません。このためコントローラーを動かすとイメ ージ通りに動かないことがあります。	異常ではありません。慣れるまでは難しいかも知れませんが、動作のコツを掴んでください。			
Q18T	動き方が悪いようです。	赤経クランプまたは赤緯クランプがゆるんでいませんか?	赤経・赤緯クランプをしっかりしめてください。			
		重量バランスが崩れています。	P16~に従いバランスをとってください。			
		バッテリーが充電不足または消耗しています(バッテリー をご使用の場合)	バッテリーを充電するか、または充電済みのバッテリーと 交換してください。			
Q19T	自動導入を行っても目標天体 とは明らかに別の方向を向き ます。	自動導入1点目はセッティングの精度によります。	続けて他の星でアライメントを取得してみてください。			
		アライメントを取得していません。	P32~に従いアライメントを取得してください。			
		ホームポジションを正確に設定しないと自動導入に影響 することがあります。	P31~に従い正確にホームポジションを設定してください。			
Q20T	アプリに表示されているのに自 動導入できません。	地平下にある天体を選択しています。	地平線より上にある☆マークのある天体を選んでくださ い。			
Q21T	使用方法に間違いはないはず だが、自動導入ができません。	望遠鏡鏡筒など搭載機材の光軸と赤緯軸の直交が取れ ていないため死角ができています。 直交度(直交の精度)が悪いとそれに比例して自動導入 の精度が得られにくくなります。	望遠鏡鏡筒などの搭載機材は赤緯軸と光軸が直角にな るように取付けてください。特に他社製品や自作機材を 搭載した場合、およびカメラ雲台など向きを自由に決め られる機材を搭載した場合は十分ご注意ください。			
Q22T	極軸望遠鏡をのぞいたが見え ません	極軸キャップ(フロント)を外していません。	極軸キャップ (フロント)を取外してください。 (P39参照)			
	みせん。	ウェイト軸を伸ばしていないため視界を遮っています。	ウェイト軸を伸ばしてください。(P10参照)			
		赤緯軸が中途半端なところで止まっているため、極軸 望遠鏡が貫通していません。赤緯軸は電動で動かすた め、位置によっては極軸望遠鏡の視界を遮ることがあり ます。	極軸望遠鏡の対物側(極軸キャップのところ)をのぞき ながら極軸望遠鏡が貫通するまでアプリ操作で赤緯軸 を回してください。 赤緯軸は赤道儀の電源投入後、"鏡筒を西向き水平にし てください" 画面が出るところまで進めるとアプリ画面 上の縦スワイプで操作できます。(P39参照)			

)ビクセン製品ご相談窓口のご案内

ビクセン製品につきましてお問い合せ、ご相談(製品の使い方、お買い物相談、修理依頼など)がございましたら、お買い上げの販売店または 下記窓口までお問い合せください。

なお、修理をご依頼される際は、もう一度本書(説明およびFAQなど)をご覧になり、故障かどうかをよくご確認ください。それでも正常に 動作しない(不具合と思われる)場合は、

- ① 商品名
- ② お買い上げ日
- 症状または内容

を具体的にご連絡ください。

1. 弊社ホームページからお問い合わせ

お問い合わせ窓口はこちらから

https://www.vixen.co.jp/contact/

WEBページの構成変更等によりリンク切れが起る場合は、トップページ(https://www.vixen.co.jp)よりお進みください。

2. お電話によるお問い合わせ

カスタマーサポート

電話番号: 04-2969-0222 (カスタマーサポート専用番号) *1

受付時間: 9:00~12:00・13:00~17:30*2 (土・日・祝日、夏季休業、年末年始休業など弊社休業日を除く)

- ※1:都合によりビクセン代表電話に転送されることもございます。 また、お電話によるお問合せは時間帯によってつながりにくい場合もございます。 お問い合わせにスムーズに回答させていただくためにも、"1.弊社ホームページからお問い合わせ" にてご用意しているお問い合わせメールフォームのご利用をお薦めいたします。
- ※2:受付時間は変更になる場合もございます。弊社ホームページなどでご確認ください。

無償修理規定・アフターサービス

- ■取扱説明書における正常な使用状態で保証期間中に故障した場合は無料修理の対象となります。(電池など消耗品および、キャリングケース、USB ケーブルの紛失は 保証対象外です)
- ■次の場合は、保証期間内でも有料修理となります。
 - 1. 取扱説明書に従った正しい使用方法がなされなかった場合。
- 2. 弊社以外での不当な修理や改造、分解による故障や損傷の場合。
- 3. 使用上、取扱上の過失または事故による故障や損傷の場合。また、落下、水濡れ等の痕跡が認められた場合。
- 4. 地震、風水害などの天災および火災、塩害、異常電圧等による故障や損傷。
- 5. 購入証明書(表面参照)の提示がない場合。
- 6. 保証書の場合、お買い上げの販売店によるご記入(販売店名、ご購入年月日)がない場合。
- ■故障個所によっては、製品の交換をもって修理とさせていただく場合がありますので、ご了承ください。
- ■本製品の補修部品は、製造をやめてから5年間を目安として保有します。原則として、補修部品を保有している期間が修理可能期間となりますので、ご了承ください。
- ■修理品の送料、お持込み時の交通費等はお客様にてご負担願います。
- ■出張修理はいたしません。
- ■ご贈答品で購入証明書がない、または販売店によるご記入がない場合は、ビクセンカスタマーサポートへご相談ください。
- ■修理代金のお支払いについては、お買い上げの販売店でお支払いください。また直接弊社に修理をお申込みの場合は、銀行振込または代金引換発送にてお支払いください。なお、銀行振込や代金引換発送における手数料につきましては、お客様にてご負担願います。振込先など詳細はビクセンカスタマーサポートにお問い合わせください。
- お問い合わせは・・・お買い上げの販売店、またはビクセンカスタマーサポートまで。